

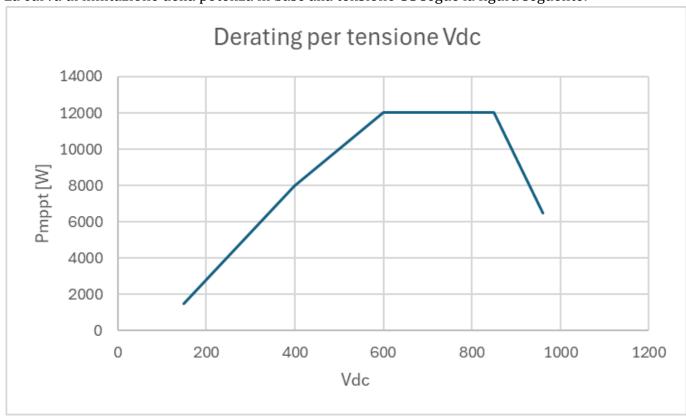
Derating Curve

3PH HYD 5/12kTL ZP3

Revisione	2
1. Scopo del documento	2
1.1. Limitazione della potenza di ciascun MPPT in base alla tensione di ingresso	2
1.2. Limitazione della potenza in base alla tensione di rete	3
1.3. Limitazione della potenza in base alla temperatura	5
Come modificare o applicare limitazioni di potenza	8
2.1. Come applicare una limitazione di potenza attiva costante	8
2.2. Come modificare la curva di limitazione di potenza in base alla tensione di rete	11

Revisione

Rev.	Data	Autore	Descrizione delle modifiche
00	27/02/2025	L. Aita	Prima emissione


1. Scopo del documento

In questo documento sono raccolte tutte le curve di derating della potenza e le potenziali modifiche applicabili ad esse. I tipi di derating sono principalmente tre:

- Riduzione di potenza in base alla tensione CC/CA
- Derating di temperatura

1.1. Limitazione della potenza di ciascun MPPT in base alla tensione di ingresso

La curva di limitazione della potenza in base alla tensione CC segue la figura seguente:

Di seguito, una tabella che descrive i valori nell'immagine precedente:

models	P1(W)	P2(W)	P3(W)	V0(V)	V1(V)	V2(V)	V3(V)
HYD 5kTL ZP3	1500	12000	6500	150	600	850	960
HYD 6.5kTL ZP3	1500	12000	6500	150	600	850	960
HYD 8kTL ZP3	1500	12000	6500	150	600	850	960
HYD 10kTL ZP3	1500	12000	6500	150	600	850	960
HYD12kTL ZP3	1500	12000	6500	150	600	850	960

dove:

- V0 è la tensione minima per erogare la potenza minima dell'inverter
- V1 è la tensione CC minima per erogare la massima potenza dell'inverter
- V2 è la tensione CC massima per erogare la potenza massima dell'inverter
- V3 è la massima tensione di lavoro dell'inverter
- P1 è la potenza in V0
- P2 è la potenza nominale
- P3 è la potenza in V3

I valori non sono modificabili tramite invio di comandi e sono dei limiti intrinseci di funzionamento degli inverter

1.2. Limitazione della potenza in base alla tensione di rete

La curva di limitazione della potenza in base alla tensione AC segue la figura seguente:

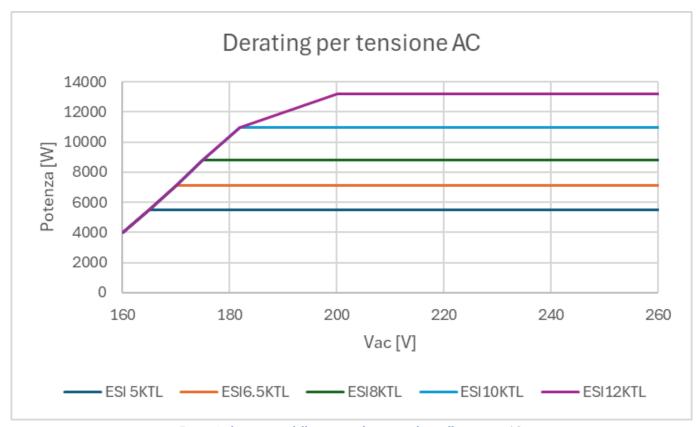


Figura 3 - limitazione della potenza di uscita in base alla tensione AC $\,$

Di seguito, una tabella che descrive i valori nell'immagine precedente:

models	P1(W)	P2(W)	V0(V)	V1(V)	V2(V)
HYD 5kTL ZP3	4000	5500	160	165	260
HYD 6.5kTL ZP3	4000	7150	160	170	260

HYD 8kTL ZP3	4000	8800	160	175	260
HYD 10kTL ZP3	4000	12000	160	185	260
HYD12kTL ZP3	4000	13200	160	200	260

Nota: V0,V2,V3 sono definiti dalla normativa vigente nei vari Safety Files.

dove:

- V0 è la tensione CA minima per erogare la potenza minima dell'inverter
- V1 è la tensione CA minima per erogare la potenza massima dell'inverter
- V2 è la tensione CA massima per erogare la potenza massima dell'inverter
- P1 è la potenza attiva nominale dell'inverter
- P2 è la potenza a 160Vac

I valori V2 e V3 sono modificabili inviando specifici comandi all'inverter tramite la APP Azzurro Operators, si veda la sezione dedicata.

1.3. Limitazione della potenza in base alla temperatura

La curva di limitazione della potenza in base alla temperatura segue le due figure seguenti:

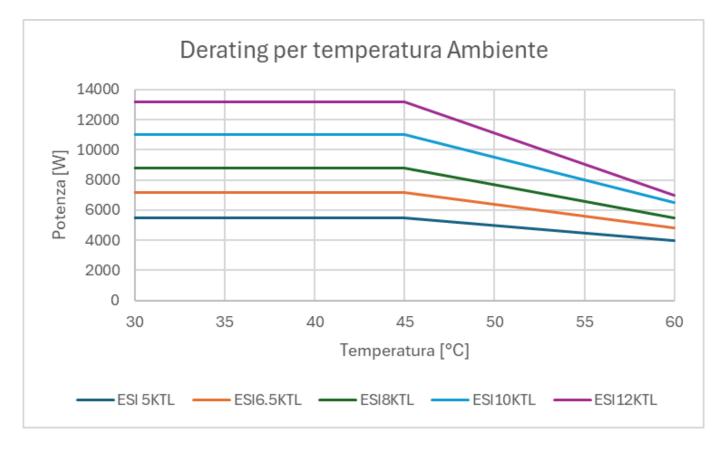


Figura 5 - limitazione della potenza attiva in base alla temperatura ambiente

Di seguito, una tabella che descrive i valori nell'immagine precedente legato alla temperatura ambiente:

models	P1(W)	P2(W)	P3(W)	T1(°C)	T2(°C)	Т3(°С)
HYD 5kTL ZP3	5500	1000	1000	45	60	60
HYD 6.5kTL ZP3	7150	1200	1200	45	60	60
HYD 8kTL ZP3	8800	1600	1600	45	60	60
HYD 10kTL ZP3	12000	2000	2000	45	60	60
HYD12kTL ZP3	13200	3000	3000	45	60	60

dove:

- T1 è la temperatura minima a cui inizia il derating
- T2 è la temperatura di fine derating termico
- T3 è la temperatura massima consentita per l'erogazione di potenza da parte dell'inverter
- P1 è la potenza attiva nominale dell'inverter
- P2 è il valore di potenza nel punto T2
- P3 è la potenza minima consentita dal derating termico

I valori non sono modificabili tramite invio di comandi e sono dei limiti intrinseci di funzionamento degli inverter

Attenzione: L'intervento della limitazione per temperatura è fortemente condizionato dall'installazione. Il manuale dell'inverter riporta le

Attenzione

distanze minime ed il posizionamento corretto dell'inverter che consentono di evitare le limitazioni per temperatura intempestive.

2. Come modificare o applicare limitazioni di potenza

Le limitazioni di potenza modificabili possono essere abilitate, disabilitate o modificate nei loro valori tramite accesso in locale oppure da remoto (se l'inverter è collegato tramite logger ai sistemi ZCS Azzurro).

L'accesso in locale è possibile utilizzando:

- La APP Azzurro Operators (scaricabile su Play Store o su IoS store)
- **Invio comandi Modbus su RS485 oppure su TCP** tramite logger esterni (necessaria mappa registri modbus da richiedere a ZCS)
- **Display dell'inverter** (non tutti i comandi sono disponibili)

L'accesso da remoto è possibile utilizzando:

- **La APP Azzurro Operators** (scaricabile su Play Store o su IoS store)

Nel seguito del documento saranno riportate delle schermate esemplificative delle sezioni di accesso e modifica, tali sezioni sono solo indicative in quanto APP e portale sono in continua modifica ed evoluzione ed i dettagli grafici potrebbero differire dalle versioni in uso.

2.1. Come applicare una limitazione di potenza attiva costante

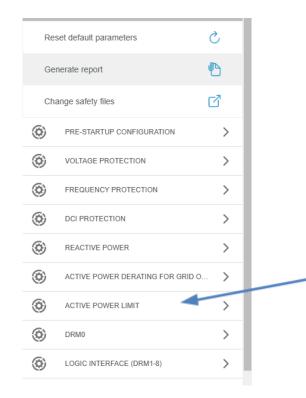
Nei casi dove fosse necessario è possibile applicare un valore di potenza massima in uscita dall'inverter fisso. Tale valore di limite massimo si aggiunge a tutte le curve di limitazione già evidenziate in precedenza. La limitazione impostata rimane memorizzata anche se l'inverter viene spento e riavviato.

Applicazione della limitazione tramite display

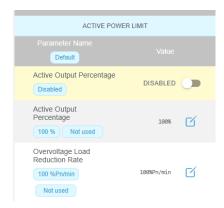
- Entrare nel menù inverter selezionando la voce "Impostazioni"
- Selezionare la voce "limite Potenza"
- Impostare Abilita
- Selezionare la % di limitazione dHYDderata (100%=Potenza nominale dell'inverter; 0%=0W)

Applicazione della limitazione tramite APP Azzurro Operator

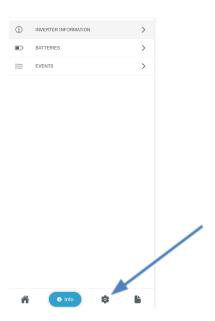
- Dopo avere eseguito la connessione all'inverter selezionare le impostazioni


- Selezionare il menù "Grid settings"

- Selezionare il menù "Active Power Limit"



- Impostare come dHYDderati i valori di enable, % di limitazione e settling time



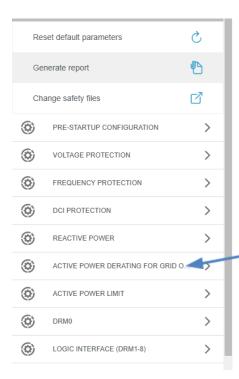
2.2. Come modificare la curva di limitazione di potenza in base alla tensione di rete

Nei casi dove fosse necessario è possibile modificare la curva di limitazione in funzione della tensione di rete. Le nuove impostazioni vengono memorizzate anche se l'inverter viene spento e riavviato.

Modifica della curva tramite APP Azzurro Operator

- Dopo avere eseguito la connessione all'inverter selezionare le impostazioni

Selezionare il menù "Grid settings"



- Selezionare il menù "Active Power Derating for Grid Overvoltage"

- Impostare come dHYDderati i valori della curva. Il grafico riporterà l'effettiva curva impostata

