

SCAN ME FOR INSTALLATION TUTORIALS & DOCUMENTATION

GUIDA RAPIDA INVERTER IBRIDO HYD3000-HYD6000-ZP1

Indossare sempre indumenti protettivi e/o dispositivi di protezione personale

Consultare sempre il manuale

Avviso generico – Informazioni Importanti per la sicurezza

INDICE

INDICE

1. INSTALLAZIONE E DISTANZE 2. INSTALLAZIONE 3. DISPLAY & PULSANTI 4. MENU' PRINCIPALE **5. CONNESSIONE ALLA RETE** 6. CONNESSIONI FOTOVOLTAICO 7. CONNESSIONE DELLA COMUNICAZIONE – PORTA COM 8. CONNESSIONE BATTERIE 9.1 SETTAGGIO CANALI FOTOVOLTAICO 9.2 SETTAGGIO CANALE BATTERIA **10.1 MISURA DELLO SCAMBIO ATTRAVERSO SENSORE CT 10.2 MISURA DELLO SCAMBIO ATTRAVERSO METER DDSU 10.2.1 SETTAGGIO METER DDSU SU SCAMBIO ED INVERTER 10.2.2 MISURA DELLA PRODUZIONE ESTERNA ATTRAVERSO METER DDSU 10.2.3 SETTAGGIO METER DDSU SU PRODUZIONE ESTERNA** 10.2.4 CONFIGURAZIONE METER DDSU DI SCAMBIO E METER DDSU DI PRODUZIONE **10.2.5 VERIFICA CORRETTA LETTURA METER DDSU 10.3 LETTURA TRAMITE METER DTSU 10.3.1 SETTAGGIO METER DTSU 10.3.2 VERIFICA CORRETTA LETTURA METER DTSU 11. PROCEDURA DI PRIMA ACCENSIONE 12. PRIMA CONFIGURAZIONE** 13. VERIFICA CORRETTO FUNZIONAMENTO **14. VERIFICA PARAMETRI IMPOSTATI INVERTER** 15. MODALITA' ZERO IMMISSIONE 16. INTERFACCIA LOGICA (DRMS0) 17.1 MODALITA' EPS (OFF GRID) 17.2 MODALITA' EPS (OFF GRID) - PROCEDURA DI CABLAGGIO E TIPOLOGIE D'INSTALLAZIONE 17.3 MODALITA' EPS' (OFF GRID) – FUNZIONAMENTO 17.4 MODALITA' EPS (OFF GRID) – ABILITAZIONE MENU' 18.1 MODALITA' SOLO OFF GRID 18.2 MODALITA' SOLO OFF GRID - ACCENSIONE 19.1 MODALITA' INVERTER PARALLELO – CONFIGURAZIONE 19.2 MODALITA' INVERTER PARALLELO - SETTAGGI **20. AGGIORNAMENTO FIRMWARE** 21. AUTOTEST 22. MODALITÀ %CARICA 23. INFO RAPIDE STATO SISTEMA 24. STATI DI FUNZIONAMENTO IN MODALITA' AUTOMATICA

Dimensioni e distanze da rispettare:

Per garantire spazio sufficiente per l'installazione e la dissipazione del calore, riservare spazio sufficiente attorno all'inverter di accumulo dell'energia domestica 1PH HYD3000-HYD6000-ZP1.

Installazione della base:

Fase 1: Posizionare il basamento contro un muro, quindi distanziarlo di 10-25 mm dal muro. Regolare le posizioni dei fori utilizzando una livella e contrassegnarle utilizzando un pennarello.

Fase 2: Per installare il basamento, rimuoverlo, praticare i fori utilizzando un trapano a percussione (ϕ 8 mm, intervallo di profondità 60-65 mm) e serrare le viti di espansione per garantire una salda installazione.

Fase 3: Utilizzare un pennarello per contrassegnare i fori per il fissaggio dei moduli batteria e degli inverter in base alle quote mostrate nella figura seguente.

If holes cannot be drilled on the ground, the battery expansion modules must be secured on the wall

Installazione dei moduli:

Fase 1: Allineare il primo modulo batteria alla base.

Fase 2: Installare i connettori su entrambi i lati e serrare le sei viti utilizzando un cacciavite a croce.

Fase 3: Installare i rimanenti moduli batteria e inverter dal basso verso l'alto. (Prima di installare il modulo successivo, assicurarsi che le viti sui connettori laterali del modulo precedente siano saldamente serrate).

Fase 1: Praticare i fori con un trapano a percussione (ϕ 8 mm, profondità 60-65 mm). Riposizionare e praticare i fori, in caso di deviazione elevata.

Fase 2: Installare il pannello di supporto B sulla parete e fissare il bullone di espansione.

Fase 3: Regolare il pannello di supporto A, assicurandosi che i fori tra il pannello A e B corrispondano.

Fase 4: Collegare e fissare il pannello A e B con viti M6*16.

Installazione della copertura:

Una volta completati i collegamenti elettrici e accertato che i collegamenti dei cavi siano corretti e affidabili, installare la copertura protettiva esterna e fissarla tramite le viti.

3. DISPLAY & PULSANTI

1	Indicatore di alimentazione del sistema	3	Pulsante
2	Indicatore di stato del sistema	4	Schermo LCD

Stato del sistema		Indicatore	
	Led blu	Led verde	Led rosso
On-grid	Accesa		
Standby (On-grid)	Intermittente		
Off-grid		Acceso	
Allarme	Off-grid Intermittente Allarme Acceso		Intermittente

Icona	Capacità batteria
	80-100%
	60-80%
	40-60%
	20-40%
	0-20%

4. MENU' PRINCIPALE

Oggi	Settimana	Mese	Anno	Ciclo Vita
Prod. FV	Prod. FV	Prod. FV	Prod. FV	Prod. FV
AutoCon	AutoCon	AutoCon	AutoCon	AutoCon
Export	Export	Export	Export	Export
Consumo	Consumo	Consumo	Consumo	Consumo
AutoCon	AutoCon	AutoCon	AutoCon	AutoCon
Import	Import	Import	Import	Import

5. CONNESSIONE ALLA RETE

Fase 0: Selezionare il tipo e le specifiche del cavo appropriati.

Fase 1: Passare il filo attraverso il terminale.

Fase 2: In base al segno, bloccare il filo nel foro della serratura sul terminale e serrarlo.

Fase 3: Spingere il terminale in avanti finché non si sente un «click».

Fase 4: Collegare il terminale di carico collegato alla porta di carico dell'inverter e spingere il terminale in avanti finché non si sente un «click».

Componente	Descrizione		Descrizione Tipo con		Tipo di cavo consigliato	Specifiche del cavo consigliate
		L (U)				
(EB)	AC Grid	N (W)	Cavo in rame multipolare da esterno	Area della sezione trasversale del conduttore: 8 AWG		
		PE (O)				
		L (U)				
	LOAD	N (W)	Cavo in rame multipolare da esterno	Area della sezione trasversale del conduttore: 8 AWG		
		PE (0)				

6. CONNESSIONI FOTOVOLTAICO

Specifiche raccomandate per i cavi di ingresso DC

Area in sezione	trasversale (mm ²)	
Intervallo	Valore raccomandato	Area esterno del cavo (mm ²)
4.0~6.0	4,0	4.5~7.8

Preparare i cavi fotovoltaici positivi e negativi.

Inserire i cavi crimpati positivi e negativi nei rispettivi connettori fotovoltaici.

Assicurarsi che parametri DC delle stringhe siano accettabili secondo le specifiche tecniche indicate nel datasheet e nel configuratore Azzurro ZCS. Inoltre verificare che che le polarità dei cavi fotovoltaici siano corrette.

Utilizzare una chiave MC4 per scollegare i connettori fotovoltaici

Connessioni per modalità master/slave:

lcona	Definizione	Funzione	Nota
1	Link Port 1	Uscita segnale parallelo	Porta segnale parallelo (RJ 45)
2	Link Port 0	Ingresso segnale parallelo	· · · · · · · · · · · · · · · · · · ·
3	Dip switch Link Port 1	Attiva e disattiva la	Il selettore può assumere 0 (selettore su) e 1 (selettore giù). 1 significa resistenza
4	Dip switch Link Port 0	resistenza	abilitata e 0 significa resistenza disabilitata

Connessione porta di comunicazione COM:

PIN	Definizione	Funzione	Osservazione		
1	N/D	N/D			
2	UC-A	Segnale differenziale RS485 -A	Sagnala di manitaraggia invartar 195		
3	UC-B	Segnale differenziale RS485 -B	Segnale di monitoraggio inverter 485		
4	EN+	Segnale differenziale RS485 +	Sognalo battoria 195		
5	EN-	Segnale differenziale RS485 -	Segnale batteria 465		
6	MET-A	Segnale differenziale RS485 - A	Sognalo contatoro intelligente 485		
7	MET-B	Segnale differenziale RS485 -B	Segnale contatore intelligence 485		
8	CAN-H	CAN dati a velocità elevata	Sognalo di comunicaziono CAN battoria		
9	CAN-L	CAN dati a bassa velocità	Segnale di comunicazione CAN batteria		
10	N/D	N/D			
11	N/D	N/D			
12	GND				
13	D1/5		(DRMS) Interfaced logishe per Australia		
14	D4/8	Segnale interfaccia logica	inferiore allo standard (ASA777) Europa		
15	D2/6	Segnale interfaccia logica	gonoralo (50540), Cormania (4105)		
16	D0		generale (50545), Germania (4105)		
17	D3/7				
18		Terminale positivo di uscita			
	CT+	del trasformatore di corrente	Segnale di comunicazione del trasformatore di		
19		Polo negativo dell'uscita del	corrente (CT)		
	CT-	trasformatore di corrente			
20	N/D	N/D			

Connessioni potenza fino a 3 batterie (1 canale):

1

2

3

- Collegare i cavi di <u>messa a terra</u> come indicato in figura.
- (BAT +, BAT -) del canale <u>BAT 1</u> dell'<u>inverter</u> collegati in parallelo a (B+, B-) del modulo <u>batteria 1</u>.
- **(B+, B-)** del modulo <u>batteria 1</u> collegati in parallelo a **(B+, B-)** del modulo <u>batteria 2</u>.
- (B+, B-) del modulo batteria 2 collegati in parallelo a (B+, B-) del modulo batteria 3.

Connessioni comunicazione fino a 3 batterie (1 canale):

- COM 1 dell'<u>inverter</u> → Link Port IN del modulo <u>batteria 1</u>.
- Link Port OUT del modulo <u>batteria 1</u> → Link Port IN del modulo <u>batteria 2</u>.
- Link Port OUT del modulo <u>batteria 2</u> → Link Port IN del modulo <u>batteria 3</u>.
- Inserire la resistenza di terminazione su Link Port OUT del modulo batteria 3.

- (BAT +, BAT -) del canale <u>BAT 2</u> dell'<u>inverter</u> collegati in parallelo a (B+, B-) del modulo <u>batteria 3</u>.
- (B+, B-) del modulo <u>batteria 3</u> collegati in parallelo a (B+, B-) del modulo <u>batteria 4</u>.

Connessioni comunicazione fino a 4 batterie (2 canali):

2

3

- COM 1 dell'inverter → Link Port IN del modulo batteria 1.
- Link Port OUT del modulo <u>batteria 1</u> → Link Port IN del modulo <u>batteria 2</u>.
- Inserire la resistenza di terminazione su Link Port OUT del modulo batteria 2.

- COM 2 dell'<u>inverter</u> → Link Port IN del modulo <u>batteria 3</u>.

- Link Port OUT del modulo batteria $3 \rightarrow$ Link Port IN del modulo batteria 4.
- Inserire la resistenza di terminazione su Link Port OUT del modulo batteria 4.

Nota: Assicurarsi che i cavi siano collegati saldamente.

Se la capacità del sistema è superiore a 15 kWh, le batterie sono collegate all'interfaccia di ingresso batteria dell'inverter in due gruppi indipendenti.

La capacità della batteria varia da 5 a 20 kWh (in caso di <u>4 batterie</u> è necessario acquistare il kit di estensione, codice <u>ZZT-ZBT5K-EXT-KIT</u>).

In caso di spegnimento del sistema, TOGLIERE TENSIONE AC, aprendo l'interruttore dedicato a questo scopo. **NON SPEGNERE MAI le batterie prima di aver tolto tensione AC** e quindi con sistema di accumulo connesso alla rete AC.

9.1 SETTAGGIO CANALI FOTOVOLTAICO

Per settare i canali del fotovoltaico:

Impostazioni di base → Configurazione canali

In caso di connessione delle stringhe in modalità indipendente:

- Ingresso canale 3 Ingresso FV 1
- $\odot~$ Ingresso canale 4 Ingresso FV 2

In caso di connessione delle stringhe in modalità parallelo:

- Ingresso canale 3 Ingresso FV 1
- Ingresso canale 4 Ingresso FV 1

9.2 SETTAGGIO CANALE BATTERIA

Per settare 1 canale batteria:	Per settare 2 canali batteria:
Impostazioni di base 🗲 Configurazione canali	Impostazioni di base 🗲 Configurazione canali
 Ingresso canale 1 – Ingresso Batt 1 Ingresso canale 2 – Non in uso 	 Ingresso canale 1 – Ingresso Batt 1 Ingresso canale 2 – Ingresso Batt 2
Impostazioni avanzate →0715 → Parametri batteria	Impostazioni avanzate →0715 → Parametri batteria
- Numero batterie: Gruppo 1 \rightarrow (inserire il numero delle batterie installate) Gruppo 2 \rightarrow 0	- Numero batterie: Gruppo 1 →(inserire il numero delle batterie installate) Gruppo 2 → (inserire il numero delle batterie installate)
- Batteria 1: Profondità di scarica: 80%	- Batteria 1: Profondità di scarica: 80% - Batteria 2: Profondità di scarica: 80%

10.1 MISURA DELLO SCAMBIO ATTRAVERSO SENSORE CT

PIN	Definizione
19	CT- (nero/giallo)
18	CT+ (rosso)

Utilizzare per distanze inferiori a 50m tra inverter e CT

Connettere negativo e positivo nel sensore rispettivamente nell'ingresso 19 e 18 del connettore COM

POSIZIONAMENTO SENSORE CT:

✓ <u>Posizionato all'uscita del contatore di scambio</u> in modo da poter leggere tutti i flussi di potenza entranti ed uscenti, deve comprendere tutti i cavi di fase che entrano o escono dal contatore.
 ✓ Il <u>verso del CT è indipendente dall'installazione</u>, viene riconosciuto dal sistema durante la prima accensione.

Utilizzare **COME CAVO DI PROLUNGA** un cavo **STP** categoria 6 ad 8 poli, utilizzare tutti i poli colorati (blu- arancio-verde-marrone) per prolungare il cavo positivo del CT e tutti i poli bianco/colorati (bianco/blu-bianco/arancio- bianco/verde- bianco/marrone) per prolungare il cavo negativo del CT. La schermatura dovrà essere collegata su uno dei due lati a terra.

10.2 MISURA DELLO SCAMBIO ATTRAVERSO METER DDSU

PIN INVERTER	PIN METER	Nota
6	→ 24	Comunicazione del Motor di Coombie
7 —	→ 25	comunicazione dei Meter di Scamolo

Connessioni Meter DDSU

1. Collegare Meter e inverter attraverso la porta seriale RS485. Lato Meter questa porta è identificati dai PIN 24 e 25.

Lato inverter si utilizza la porta di connessione identificata come "COM" collegando i PIN 6 e 7

- 2. Collegare il Meter nella modalità «inserzione diretta» nel dettaglio:
- ✓ Collegare il PIN 2 del Meter con il cavo di neutro (N);
- ✓ Connettere il PIN 3 rispettivamente alla fase direzione contatore di scambio:
- ✓ Connettere il PIN 1 alla fase direzione impianto fotovoltaico e carichi.

NOTA: Per distanze fra Meter e inverter Ibrido superiori a 100 metri è consigliato connettere lungo la daisy chain 485 due resistenze da 120 Ohm, la prima all'inverter (fra i PIN 6 e 7 della COM inverter), la seconda direttamente al Meter (PIN 24 e 25).

10.2.1 SETTAGGIO METER DDSU SU SCAMBIO ED INVERTER

1. Controllare, premendo il pulsante che l'indirizzo del Meter sia impostato su 001.

Da display sono visualizzabili, oltre quanto sopra descritto i valori di:

- ✓ Corrente;
- ✓ Tensione;
- ✓ Fattore di potenza;
- ✓ Potenza.

2. Per configurare la lettura del Meter sull'inverter, accedere al display dell'inverter (come da figure):

- 1. Primo tasto a sinistra dell'inverter;
- 2. Impostazioni avanzate;
- 3. Inserire password «0715»;
- 4. Set PCC Meter;
- 5. Abilita;
- 6. Ok.

Set !	PCC M	eter	121		

10.2.2 MISURA DELLA PRODUZIONE ESTERNA ATTRAVERSO METER DDSU

Connessioni Meter DDSU

1. Collegare Meter e inverter attraverso la porta seriale RS485.

Lato Meter questa porta è identificati dai **PIN 24 e 25.**

Lato inverter utilizzare porta COM collegando i **PIN 6 e 7**

2. Collegare il Meter nella modalità «inserzione diretta» nel dettaglio:

- ✓ Collegare il PIN 2 del Meter con il cavo di neutro (N);
- ✓ Connettere il PIN 3 rispettivamente alla fase direzione produzione esterna;
- ✓ Connettere il PIN 1 alla fase direzione nuovo impianto fotovoltaico e carichi.

NOTA: Per **distanze** fra Meter e inverter Ibrido **superiori a 100 metri** è consigliato connettere lungo la daisy chain 485 due resistenze da 120 Ohm, la prima all'inverter (fra i PIN 6 e 7 della COM inverter), la seconda direttamente al Meter (PIN 24 e 25).

17

1.1 Controllare, premendo il pulsant
che l'indirizzo del Meter sia impostato su **002**.
Da display sono visualizzabili, oltre quanto sopra descritto i valori di:

- ✓ Corrente;
- ✓ Tensione;
- ✓ Fattore di potenza;
- ✓ Potenza.

Potenza

Tensione

Power facto

1.2 Settaggio indirizzo meter produzione:

2. Non sono necessarie configurazioni sull'inverter per il settaggio del Meter sulla produzione esterna.

10.2.4 CONFIGURAZIONE METER DDSU DI SCAMBIO E METER DDSU DI PRODUZIONE

10.2.5 VERIFICA CORRETTA LETTURA METER DDSU

Per verificare la corretta lettura del **meter sullo scambio** è necessario assicurarsi che l'inverter ibrido e qualunque altra fonte di produzione fotovoltaica siano spenta. Accendere carchi di entità superiore ad 1kW.

Portarsi davanti al meter ed utilizzando i tasti

- " per scorrere fra le voci, deve essere verificato che:
- La Potenza P sia:
 - •Di entità superiore ad 1 kW.
 - •In linea con i consumi domestici.
 - •Il segno davanti a ciascun valore negativo (-).

- In caso di **meter per la lettura della produzione di fotovoltaici già presenti** è necessario ripetere le operazioni precedenti :
- 1. Il segno delle potenze stavolta dovrà essere positivo per P.
- 2. Accendere Inverter Ibrido lasciando in posizione off l'interruttore PV lato DC, verificare che il valore di potenza totale Pt fotovoltaica esterna sia in linea con il valore mostrato sul display dell'inverter.

10.3 LETTURA TRAMITE METER DTSU

Schema unifilare Inverter Ibrido modalità lettura Meter solo su scambio

Schema unifilare Inverter Ibrido modalità lettura Meter su scambio e produzione esterna

2. Collegare il PIN 10 del Meter con il cavo di neutro (N), connettere il PIN 2, 5 e 8 rispettivamente alle fasi R, S e T.
Collegamenti CT, il sensore posizionato sulla fase R dovrà avere i terminali connessi sui PIN 1 (filo rosso) e PIN 3 (filo nero).
Il sensore posizionato sulla fase S dovrà avere i terminali connessi sui PIN 4 (filo rosso) e PIN 6 (filo nero).
Il sensore posizionato sulla fase T dovrà avere i terminali connessi sui PIN 7 (filo rosso) e PIN 9 (filo nero).
Posizionare i sensori facendo attenzione all'indicazione sul sensore stesso (freccia rivolta verso la rete).
ATTENZIONE: agganciare i CT alle fasi solo dopo averli connessi al meter.

NOTA: Per **distanze** fra Meter e inverter Ibrido **superiori a 100 metri** è consigliato connettere lungo la daisy chain 485 due resistenze da 120 Ohm, la prima all'inverter (fra i PIN 6 e 7 della COM inverter), la seconda direttamente al Meter (PIN 24 e 25).

SETTAGGIO METER DTSU SU SCAMBIO ED INVERTER

1. Controllare, premendo il pulsante che l'indirizzo del Meter sia impostato su **001**. Da display sono visualizzabili, oltre quanto sopra descritto i valori di:

- ✓ Corrente;
- ✓ Tensione;
- ✓ Fattore di potenza;
- ✓ Potenza.

2. Per configurare la lettura del Meter sull'inverter, accedere al display dell'inverter (come da figure):

- 1. Primo tasto a sinistra dell'inverter;
- 2. Impostazioni avanzate;
- 3. Inserire password «0715»;
- 4. Set PCC Meter;
- 5. Abilita;
- 6. Ok.

20

Ţ

10.3.1 SETTAGGIO METER DTSU

- Per configurare il dispositivo in modalità lettura sullo scambio è necessario entrare nel menù dei settaggi, come indicato di seguito:
- •Premere SET apparirà la scritta CODE
- Premere nuovamente SET
- •Scrivere la cifra "701" :
 - Dalla prima schermata in cui comparirà il numero "60<u>0</u>", premere il tasto "→" una volta per scrivere il numero "60<u>1</u>".
 - Premere "SET" per due volte per spostare il cursore verso sinistra andando ad evidenziare "<u>6</u>01";
 - 3. Premere una volta il tasto "→" più fino a scrivere il numero "<u>7</u>01"

Nota: In caso di errore premere "ESC" e poi di nuovo "SET" per reimpostare il codice richiesto.

•Confermare premendo SET fino ad entrare nel menù dei settaggi.

•Entrare dentro i seguenti menù ed impostare i parametri indicati:

- 1. CT:
 - a. Premere SET per entrare nel menù
 - b. Scrivere "40":
 - a. Dalla prima schermata in cui comparirà il numero "<u>1</u>", premere il tasto "→" più volte fino a scrivere il numero "1<u>0</u>".
 - b. Premere "SET" una volta per spostare il cursore verso sinistra andando ad evidenziare "10"
 - c. Premere il tasto " \rightarrow " più volte fino a scrivere il numero " $\underline{40}$ "
 - d. Premere "ESC" per confermare e " \rightarrow " per scorrere all'impostazione successiva.

Nota: In caso di sonde CT diverse da quelle fornite in dotazione scrivere il corretto rapporto di trasformazione.

Nota: In caso di errore premere "SET" fino ad evidenziare la cifra relativa alle migliaia e successivamente premere " \rightarrow " fino a quando non comparirà solamente il numero "1"; a questo punto ripeter la procedura descritta sopra.

CHNT

2. ADDRESS:

a. Premere **SET** per entrare nel menù:

d. Premere "ESC" per confermare.

- b. Lasciare "01" per Meter sullo scambio
- c. Scrivere "0<u>2</u>" (premendo una volta "→" dalla schermata "01"). Con indirizzo 02 l'inverter assegnerà come potenze relative alla produzione i dati inviati dal meter. Possono essere settati fino ad un massimo di 3 meter per la produzione (Indirizzi 02 03 04)

Meter sullo scambio

Meter sulla Produzione

10.3.2 VERIFICA CORRETTA LETTURA METER DTSU

Per verificare la corretta lettura del meter sullo scambio è necessario assicurarsi che l'inverter ibrido e qualunque altra fonte di produzione fotovoltaica siano spenta.

Accendere carchi di entità superiore ad 1kW per ciascuna delle tre fasi dell'impianto. Portarsi davanti al meter ed utilizzando i tasti " \rightarrow " per scorrere fra le voci e "ESC" per tornare indietro, deve essere verificato che:

In caso di meter per la lettura della produzione di fotovoltaici già presenti è necessario ripetere le operazioni precedenti :

- 1. Verifica Power factor come descritto nel caso precedente
- 2. Il segno delle potenze stavolta dovrà essere positivo per Pa, Pb, e Pc
- 3. Accendere Inverter Ibrido, verificare che il valore di potenza totale Pt fotovoltaica sia in linea con il valore mostrato sul display dell'inverter .

Per fornire tensione DC all'inverter ibrido ruotare il sezionatore in posizione ON

• • TT • •

22

12. PRIMA CONFIGURAZIONE

IMPORTANTE: Dotarsi di PC e USB in caso di richieste di aggiornamento e impostazioni country code corretti

Parametro	Nota
1. Opzione lingua	L'impostazione predefinita è la lingua inglese.
*2. Impostazione e conferma dell'ora di sistema	Se si è connessi al computer host come l'app del collettore o per dispositivi mobili, l'ora dovrebbe essere stata calibrata sull'ora locale.
**3. Importazione dei parametri di sicurezza	È necessario trovare il file dei parametri di sicurezza (che prende il nome dal paese di sicurezza corrispondente) sul sito Web, scaricarlo sull'unità flash USB e importarlo.
***4. Impostazione dei parametri della batteria	I valori predefiniti possono essere visualizzati in base alla configurazione del canale di ingresso.
5. La configurazione è completa	

*2. Importazione e conferma del'ora di sistema

Data e Ora

2019-01-02 09:23:07

**3. Importazione parametri di sicurezza (Codice paese)

			1.Imposta	1.Impostazioni di base					
							3. Param	etri sicur	ezza
Cor	le		Region	Code	2	Re	agion		
	000		VDE4105		000		EN50438		
	001		BDEW	018	001	EU	EN50549		
	000		UDD010C		002		EU-EN50549-HV		
000	002	Germany	VDE0126	019	000	IEC EN61727			
	003		VDE4105-HV	020	000	Vanaa	Korea		
	004		BDEW-HV	020	001	Korea	Korea-DASS		
	000		CEI-021 Internal	021	000	Sweden			
	001		CEI-016 Italia		000		EU General		
001		Italia		022	001	Europe General	EU General-MV		
	002		CEI-021 External		002		EU General-HV		
	003		CEI-021 In Areti	024	000	Cyprus	Cyprus		
<u> </u>	004		CEI-021InHV	0.05	000	Too dia	India		
	0.00		4	025	001	India	India-MV		
002	000		Australia		002		India-HV		
	008	Australia	Australia-B	026	000	Philippines	PHI		
	000		Australia C		001		PHI-MV New Teelend		
<u> </u>	009		FCP. PD1699	027	000	New Zealand	New Zealand		
	000		PD1499.UV	027	001	New Zealand	New Zealand-HV		
003	002	Spain	NTS		0002		Reazil		
000	002		UNF217002+RD647		001		Brazil-I V		
	004		Spian Island	028	002	Brazil	Brazil-230		
004	000	Turkey	Turkey	020	003	21020	Brazil-254		
005	000	Denmark	Denmark.		004		Brazil-288		
	001		DK-TR322		000		SK-VDS		
006	000	Greece	GR-Continent	029	001	Slovakia	SK-SSE		
	001		GR-Island		002		SK-ZSD		
	000		Netherland	030	000				
007	001	Netherland	Netherland-MV	031-032					
L	002		Netherland-HV	033	000	Ukraine			
008	000	Belgium	Belgium	034	000	Norway	Norway		
	001		Belgium-HV		001		Norway-LV		N
009	000		G99	035	000	Mexico	Mexico-LV		الد
	001	UK	G98	036-037				\leftarrow	
	002		G99-HV	038	000	60Hz			dı
010	000		China-B Taiwan	039	000	Ireland EN50438	Their PEA		
	001		Trinallome	040	000	Thailand	Thai-MEA		
	003		HongKong	041	001		1111111111		
	004		SKYWORTH	042	000	50Hz	LV-50Hz		
	005	China	CSISolar	043					
	006		CHINT	044	000	المسلم فالمنا	SA		
	007		China-MV	044	001	South Africa	SA-HV		
	008		China-HV	045					
	009		China-A	046	000	Dubai	DEWG		
	000		France	040	001	Dubai	DEWG-MV		
011	001	France	FAR Arrete23	047-106			ļ		
	002		FR VDE0126-HV	107	000	Croatia	Croatia		
<u> </u>	003		France VFR 2019	108	000	Lithuania	Lithuania		
	000		Poland	109	000		┥────┤		
012	001	Poland	Poland-MV	110	0.05				
	002		Poland-HV	111	000	Columbia	Columbia		
012	003	Austria	Poland-ABCD	112 100	001		Columbia-LV		
013	000	Austria	for Erzeuger	12-120	000	Saudi Arabia	IEC62116		
014	001	Japan		122	000	Latvia	12002110		
015	003	Switzerlan		123	000	Romania			
16-17									

Per settare il paese corretto inserire all'interno della chiavetta USB la cartella decompressa denominata "safety" scaricabile sul sito: https://www.zcsazzurro.com/it/documentazione/ea

NOTA: Gli inverter sono settati di default con il codice paese relativo alla CEI-021 per interfaccia interna, qualora fosse richiesto l'utilizzo di un country code differente contattare l'assistenza

13. VERIFICA CORRETTO FUNZIONAMENTO

1) Ruotare il sezionatore fotovoltaico in posizione off e disconnettere l'inverter dalla rete

2) Ridare tensione AC tirando su l'interruttore dedicato :

3) Verificare che il valore di potenza prelevata dalla rete a display sia circa pari al valore di potenza assorbita mostrata dal contatore, oppure ricavata misurando tramite pinza amperometrica sotto il contatore di scambio.

On-Grid S PV1 : NA PV	tate ™ ■ /2 : NA 1.47kW
.0.00kW	1.47kW
2018-06-28	09 : 11 : 28

5) Accendere la batteria/e verificando che il sistema vada a lavorare nelle modalità descritte nel paragrafo STATI DI FUNZIONAMENTO IN
 MODALITA' AUTOMATICA:
 •PV>Load →batteria in carica

- •PV<Load Batteria in scarica
- •PV=Load Batteri in stand-by

NOTA: Al primo avvio le batterie andranno in carica al 100%

Nota: Se non sono verificate le condizioni sopra descritte occorre:
Verificare il corretto posizionamento del sensore di corrente e procedere quindi con un nuovo avvio del sistema.

14. VERIFICA PARAMETRI IMPOSTATI INVERTER

Per verificare se i parametri impostati sono corretti, entrare nel menù del display alla voce "Info inverter", e controllare i dati con particolare risalto a quelli evidenziati:

15. MODALITA' ZERO IMMISSIONE

2. Impostazioni avanzate	Inserire 0715			
	2. Anti-reflux (Limit. –feed-in)			
L'utente può abilitare i limitare la potenza ma La potenza di reflusso	l "Controllo anti-reflusso" per ssima di esportazione verso la rete. impostata corrisponde alla potenza	1. Controllo anti- reflux	\rightarrow	Attivo Disattivo
massima di esportazio	ne desiderata verso la rete.	2. Potenza di reflux	\rightarrow	***KW

In caso di un'interruzione di rete, o di avvio in modalità OFF - Grid, se la funzione EPS è attiva, l'inverter HYD3000-HYD6000-ZP1 funzionerà in modalità EPS (alimentazione d'emergenza), utilizzando corrente e energia fotovoltaiche immagazzinate nella batteria per fornire energia al carico critico attraverso la porta di collegamento LOAD.

17.2 MODALITA' EPS (OFF GRID) - PROCEDURA DI CABLAGGIO E TIPOLOGIE D'INSTALLAZIONE

Individuare i carichi domestici critici o prioritari: si consiglia di individuare i carichi domestici strettamente necessari in condizioni di black out, quali ad esempio l'illuminazione, eventuali frigoriferi o surgelatori, prese di emergenza.

• <u>Carichi di potenza elevata</u> (quali forni, lavatrici, pompe di calore) potrebbero non essere supportati dall'inverter in stato di EPS, vista la massima potenza erogabile in tali condizioni.

• <u>Carichi con elevate correnti di spunto</u> (quali ad esempio pompe, compressori o in generale dispositivi azionati da motori elettrici) potrebbero non essere supportati dall'inverter in stato di EPS, in quanto la corrente di spunto, seppur per un periodo di tempo estremamente limitato, risulta notevolmente superiore a quella erogabile dall'inverter.

• <u>Carichi di tipo induttivo</u> (quali ad esempio piastre ad induzione) potrebbero non essere supportati dall'inverter in stato di EPS, a causa della forma d'onda propria di questi dispositivi.

Cablare i cavi di fase, neutro e messa a terra all'uscita LOAD posizionata a destra del lato inferiore dell'inverter. NOTA: l'uscita LOAD deve essere impiegata solamente per la connessione del carico critico.

COMMUTATORE

In caso di manutenzione sui componenti dell'impianto fotovoltaico o in caso di inverter non utilizzabile, è consigliabile prevedere l'installazione di un commutatore, in questo modo sarà possibile alimentare direttamente dalla rete i carichi normalmente connessi alla linea Load dell'inverter.

Posizione 1→ Carichi prioritari connessi ed

Posizione 0 \rightarrow Carichi prioritari non alimentati

Posizione 2→ Carichi prioritari connessi ed alimentati dalla rete

TELERUTTORE A DOPPIO SCAMBIO

Per gli impianti incentivati è possibile installare un teleruttore a doppio scambio, questo dispositivo farà in modo che i carichi critici siano normalmente alimentati dalla rete, saranno invece alimentati dalla linea EPS LOAD dell'inverter solamente in caso di black out elettrico e grazie alla commutazione dei contatti del teleruttore.

NOTA: Per le condizioni sopra descritte, in caso di black out elettrico, la parte di impianto alimentato dalla porta LOAD dell'inverter si comporta come un sistema IT.

Nota: Nel caso in cui si dovesse eseguire l'installazione dell'inverter ibrido in condizioni impiantistiche differenti da quelle riportate negli schemi sopra, contattare l'assistenza per verificarne la fattibilità.

17.3 MODALITA' EPS' (OFF GRID) - FUNZIONAMENTO

In caso sia presente la tensione alternata fornita dalla rete elettrica (condizione di normale funzionamento), sia i carichi standard dell'impianto che quelli prioritari sono alimentati dalla rete elettrica senza necessità di utilizzare un teleruttore a doppio scambio. Nella seguente figura è evidenziato tale funzionamento.

In caso di **black out elettrico**, verrà a mancare la tensione alternata fornita dalla rete elettrica; tale condizione commuterà i contatti interni dell'inverter ibrido che, passato il tempo di attivazione, continuerà a fornire una tensione alternata di 230V all'uscita LOAD, alimentando i soli carichi critici in base disponibilità delle batterie e fotovoltaico.

NOTA: con questa configurazione durante la condizione di black out l'impianto risulta essere un sistema IT.

17.4 MODALITA' EPS (OFF GRID) – ABILITAZIONE MENU'

Per abilitare la modalità EPS (OFF GRID) deve:

1. Essere abilitata la funzione EPS da display.

4

Accendendo l'inverter HYD3000-HYD6000-ZP1 in assenza di rete esso è in grado di lavorare fornendo l'energia in entrata dal PV ed immagazzinata nelle batterie ai carichi critici prestabiliti. Per far questo è necessario attivare la modalità EPS (Emergency Power Supply).

- 18.2 MODALITA' SOLO OFF GRID ACCENSIONE
- Verificare che il sezionatore DC dell'inverter sia ruotato in posizione off.

2) Accendere le batterie:

Portare il sezionatore su ON;
 Premere il pulsante.

Una volta premuto il pulsante si illuminerà ed il contatto interno si chiuderà.

3) Accendere il fotovoltaico ruotando il sezionatore in posizione ON.

19.1 MODALITA' INVERTER PARALLELO - CONFIGURAZIONE

1. Gli inverter devono essere interconnessi fra loro utilizzando il cavo in dotazione nella confezione avendo cura di popolare gli ingressi come di seguito:

Link port 0 dell'inverter Master con resistenza di terminazione abilitata (switch impostato su 1)
 Link port 1 dell'Inverter Master → Link port 0 dell'Inverter Slave 1

•Link port 1 dell'Inverter Slave 1 \rightarrow Link port 0 dell'Inverter Slave 2

•...

•Link port 1 dell'Inverter Slave n-1 → Link port 0 dell'Inverter Slave n

•Link port 1 dell'inverter Slave n con resistenza di terminazione abilitata (switch impostato su 1)

Nota:

Le resistenze di terminazione si abilitano tramite switch Il cavo di parallelo fra gli inverter fornito in dotazione

- 2. Qualora gli inverter collegati siano della stessa taglia, è possibile parallelare le uscite LOAD al fine di alimentare lo stesso gruppo di carichi prioritari. Per far ciò è necessario utilizzare un quadro di parallelo. E' necessario accertarsi che i collegamenti tra ciascun inverter ed il quadro di parallelo abbiano:
- La stessa lunghezza
- La stessa sezione
- Una impedenza più bassa possibile.

Si consiglia di inserire su ciascuna linea di connessione tra inverter e quadro una protezione adeguata.

- 3. Il carico totale connesso sulle uscite LOAD dovrà essere inferiore alla somma complessiva delle potenze erogabile degli inverter in modalità EPS.
- 4. I meter dovranno essere connessi all'Inverter Master (Primary)

19.2 MODALITA' INVERTER PARALLELO - SETTAGGI

1.Parallel Control	Enable / disable
2.Parallel Master-Slave	Primary / Replica
3.Parallel Address	00 (Primary)
	01 (replica 1)
	0n (Replica n)
4.Save	ok

20. AGGIORNAMENTO FIRMWARE

Menu principale			- mail
	1. Impostazioni di base		
	2. Impostazioni avanzate	zesazzurra.com	317-
	3. Lista eventi		1
	4. Info sistema		Line
Psw 0715	5. Aggiornamento Software		
	6. Statistiche energia		

Per effettuare l'aggiornamento fw inserire all'interno della chiavetta USB la cartella decompressa denominata "firmware" scaricabile sul sito <u>https://www.zcsazzurro.com/it/documentazione/easy-power-one-all</u> All'interno della cartella saranno presenti i file per l'aggiornamento in formato .bin oppure .hex

∠ → × ♠ → firmware	Q Cerca in firmware		← → • ↑ ¹	> Unità USB (D:) > firmware			
Nome ^	Ultima modifica Tipo Din	nensione 🗸	🖌 📩 Accesso rapido	Nome	Ultima modifica	Tipo	Dimensione
Accesso rapido firmware Greative Cloud Files	22/09/2023 16:56 Cartella di file		Desktop 🖈	ESHV_ARM.bin	21/01/2022 04:06	File BIN	405 KB
> V Dropbox			Download	ESHV_DM.bin	24/01/2022 04:07	File BIN	146 KB
> 📥 OneDrive - Personal			📄 Documenti 🛛 🖈	ESHV_DS.bin	20/01/2022 02:50	File BIN	118 KB

21. AUTOTEST

23. INFO RAPIDE STATO SISTEMA

Premendo dal menu principale sarà possibile accedere alle informazioni istantanee di batteria e rete AC.

Vgrid:	2.V
Igrid:	5A
Frequency: 50.01H	Ηz
Bat Voltage: 48.2	2V
Bat CurCHRG: 0.00	AC
Bat CurDisC:	5A
Bat Capacity: 52	2%
Bat Cycles: 0000	TC
Bat Temp:	C

PV1	Power				(WC
PV2	Voltag	e	••••	•••	7.1	LV
PV2	Curren	it …	••• •••	•••	0.01	LA
PV2	Power				()開
Inve	erter T	emp.	••••		21)	C

Premendo dal menu principale sarà possibile accedere alle informazioni istantanee del lato DC dell'inverter.

24. STATI DI FUNZIONAMENTO IN MODALITA' AUTOMATICA

Quando la potenza prodotta dall'impianto fotovoltaico sarà maggiore di quella richiesta dai carichi, l'inverter caricherà la batteria con la potenza in eccesso.

A batteria completamente carica, o quando la potenza di carica viene limitata (per preservare l'integrità della batteria), la potenza in eccesso verrà esportata in rete.

Quando la potenza dell'impianto fotovoltaico sarà minore di quella richiesta dai carichi il sistema utilizzerà l' energia stoccata nella batteria per alimentare i carichi di casa.

Quando la somma fra la potenza prodotta dall'impianto fotovoltaico e quella fornita dalla batteria sarà minore di quella richiesta dai carichi, la mancante sarà prelevata dalla rete.

L'inverter rimarrà in Standby fino a quando: •la differenza fra la produzione fotovoltaica e la richiesta dai carichi sarà inferiore a 100W •la batteria è carica al massimo e la produzione fotovoltaica è superiore ai consumi (con tolleranza di 100W)

•la batteria è scarica e la produzione fotovoltaica è inferiore ai consumi (con tolleranza di 100W)