

Zawsze należy nosić odzież ochronną i/lub środki ochrony indywidualnej

Korzystać zawsze z instrukcji obsługi

Uwaga ogólna - Ważne informacje dotyczące bezpieczeństwa

SCAN ME FOR INSTALLATION TUTORIALS & DOCUMENTATION JRR

SZYBKI PRZEWODNIK

FALOWNIK HYBRYDOWY HYD3000-

HYD6000-ZP1

SPIS TREŚCI

1. MONTAŻ I ODLEGŁOŚCI 2. INSTALACJA 3. WYŚWIETLACZ I PRZYCISKI 4. MENU GŁÓWNE 5. PODŁĄCZENIE DO SIECI 6. PODŁĄCZENIE FOTOWOLTAIKI 7. PODŁĄCZENIE KOMUNIKACYJNE - PORT COM 8. PODŁĄCZENIE BATERII 9.1 USTAWIENIE KANAŁU FOTOWOLTAICZNEGO 9.2 USTAWIENIE KANAŁU BATERII **10.1 POMIAR WYMIANY ZA POMOCĄ CZUJNIKA CT 10.2 POMIAR WYMIANY ZA POMOCA MIERNIKA DDSU 10.2.1 USTAWIENIE MIERNIKA NA WYMIANIE I FALOWNIKU** 10.2.2 POMIAR PRODUKCJI ZEWNETRZNEJ ZA POMOCA MIERNIKA DDSU 10.2.3 USTAWIENIE MIERNIKA DDSU NA PRODUKCJI ZEWNĘTRZNEJ 10.2.4 KONFIGURACJA MIERNIKA DDSU WYMIANY I miernikA DDSU PRODUKCJI 10.2.5 WERYFIKACJA PRAWIDŁOWEGO ODCZYTU MIERNIKA DDSU **10.3 ODCZYT ZA POMOCA MIERNIKA DTSU 10.3.1 USTAWIENIE MIERNIKA DTSU** 10.2.5 WERYFIKACJA PRAWIDŁOWEGO ODCZYTU MIERNIKA DDSU **11. PROCEDURA PIERWSZEGO URUCHOMIENIA 12. PIERWSZA KONFIGURACJA** 13. SPRAWDZENIE POPRAWNOŚCI DZIAŁANIA 14. SPRAWDZENIE USTAWIONYCH PARAMETRÓW FALOWNIKA **15. TRYB ZERO WPROWADZANIA** 16. INTERFEJS LOGICA (DRMS0) 17.1 TRYB EPS (OFF GRID) 17.2 TRYB EPS (OFF GRID) - PROCEDURA OKABLOWANIA I RODZAJE INSTALACJI 17.3 TRYB EPS (OFF GRID) - DZIAŁANIE 17.4 TRYB EPS (OFF GRID) - WŁĄCZENIE MENU 18.1 TRYB WYŁĄCZNIE OFF GRID 18.2 TRYB WYŁĄCZNIE OFF GRID - WŁĄCZANIE 19.1 TRYB FALOWNIKA RÓWNOLEGŁEGO - KONFIGURACJA 19.2 TRYBY FALOWNIKA RÓWNOLEGŁEGO - USTAWIENIA **20. AKTUALIZACJA FIRMWARE** 21. AUTOTEST 22. TRYB %ŁADOWANIA 23. SZYBKIE INFORMACJE DOTYCZĄCE SYSTEMU 24. STANY PRACY W TRYBIE AUTOMATYCZNYM

Wymiary i odległości, których należy przestrzegać:

Aby zapewnić wystarczającą ilość miejsca na instalację i odprowadzanie ciepła, należy zarezerwować wystarczającą ilość miejsca wokół falownika magazynującego energię w gospodarstwie domowym 1PH HYD3000-HYD6000-ZP1.

Instalacja podstawy:

Faza 1: Umieścić cokół przy ścianie, a następnie oddalić go od ściany o 10-25 mm. Wyregulować położenie otworów za pomocą poziomicy i zaznaczyć je flamastrem.

Faza 2: Aby zainstalować podstawę, należy zdjąć, wywiercić otwory za pomocą wiertarki udarowej (φ 8 mm, zakres głębokości 60-65 mm) i dokręcić śruby rozporowe, aby zapewnić bezpieczną instalację.

Faza 3: Za pomocą flamastra zaznaczyć otwory do zamocowania modułów baterii i falowników zgodnie z wymiarami pokazanymi na poniższym rysunku.

expansion modules must be secured on the wa

Instalacja modułów:

Faza 1: Ustawić liniowo pierwszy moduł baterii na podstawie.

Faza 2: Zainstalować złącza po obu stronach i dokręcić sześć śrub za pomocą śrubokręta krzyżakowego.

Faza 3: Zainstalowaź pozostałe moduły baterii i falownik od dołu do góry. (Przed zainstalowaniem kolejnego modułu należy upewnić się, że śruby na złączach bocznych poprzedniego modułu są dobrze dokręcone).

Faza 1: Wywiercić otwory za pomocą wiertarki udarowej (φ 8 mm, zakres głębokości 60-65 mm). W przypadku dużego odchylenia, należy zmienić położenie i wywiercić otwory.

Faza 2: Zamontować panel nośny B na ścianie i dokręcić śrubę rozporową.

Faza 3: Wyregulować panel nośny A, upewniając się, że otwory między panelem A i B pasują do siebie.

Faza 4: Połączyć i zabezpieczyć panele A i B za pomocą śrub M6*16.

Instalacja pokrywy:

Po wykonaniu podłączeń elektrycznych i upewnieniu się, że podłączenia kablowe są prawidłowe i niezawodne, zainstalować zewnętrzną pokrywę ochronną i zabezpieczyć ją śrubami.

3. WYŚWIETLACZ I PRZYCISKI

1	Wskaźnik zasilania systemu	3	Przycisk
2	Wskaźnik stanu systemu	4	Ekran LCD

Stan systemu	Wskaźnik		
Stan Systema	Dioda led niebieska	Dioda LED zielona	Dioda LED czerwona
On-grid	Włączona		
Standby (On-grid)	Przerywana		
Off-Grid		Włączona	
Alarm			Przerywana

Ikona	Pojemność baterii
	80-100%
	60-80%
	40-60%
	20-40%
	0-20%

4. MENU GŁÓWNE

Statystyki

Dzisiaj	Tydzień	Miesiąc	Rok	Cykl życia
Prod. FV				
AutoCon	AutoCon	AutoCon	AutoCon	AutoCon
Export	Export	Export	Export	Export
Zużycie	Zużycie	Zużycie	Zużycie	Zużycie
AutoCon	AutoCon	AutoCon	AutoCon	AutoCon
Import	Import	Import	Import	Import

5. PODŁĄCZENIE DO SIECI

Faza 0: Wybrać odpowiedni typ i specyfikację przewodu.

Faza 1: Przeprowadzić drut przez zacisk.

Faza 2: Zgodnie z oznaczeniem, zacisnąć przewód w otworze klucza na zacisku i dokręcić.

Faza 3: Pchnąć zacisk do przodu, aż do usłyszenia "kliknięcia".

Faza 4: Podłączyć podłączony zacisk obciążenia do przyłącza obciążenia falownika i przesunąć zacisk do przodu, aż do usłyszenia "kliknięcia" i podłączenie zacisków zostanie zakończone.

Komponent	Opis		Rodzaj zalecanego przewodu	Zalecana specyfikacja przewodu
		L (U)		
	AC Grid	N (W)	Przewod miedziany wielobiegunowy z	Pole przekroju poprzecznego przewodu: 8 AWG
		PE (0)	2ewiiąti 2	
		L (U)		
	LOAD	N (W)	Przewod miedziany wielobiegunowy z	Pole przekroju poprzecznego przewodu: 8 AWG
		PE (0)	Zewnątrz	

6. PODŁĄCZENIE FOTOWOLTAIKI

Zalecane specyfikacje dla przewodów wejściowych prądu stałego

Powierzchni	a w przekroju	
poprzecznym (mm ²)		Średnica zewnętrzna przewodu
Przedział	Zalocana wartoćć	(mm²)
czasowy		
4.0~6.0	4,0	4.5~7.8

Przygotować przewody fotowoltaiczne dodatnie i ujemne 1 8 10 mm

1. Kontakt dodatni 2. Kontakt ujemny

MC4 Wrench

Wprowadzić przewody zaciskane dodatnio i ujemnie do odpowiednich złączy fotowoltaicznych

Upewnić się, że wszystkie parametry łańcucha prądu stałego są akceptowalne dla falownika zgodnie z danymi technicznymi podanymi w arkuszu danych i w konfiguratorze Azzurro ZCS. Należy również sprawdzić, czy polaryzacje przewodów fotowoltaicznych są prawidłowe.

fotowoltaicznych należy upewnić się, że wyłącznik obrotowy DC jest na pozycji OFF.

7. PODŁĄCZENIE KOMUNIKACYJNE - PORT COM

Podłączenia dla trybu master/slave:

Ikona	Definicja	Funkcja	Uwaga	
1	Link Port 1	Wyjście sygnału równoległego	Port sygnału równoległego (RJ 45)	
2	Link Port 0	Wejście sygnału RÓWNOLEGŁEGO	45)	
3	Dip switch Link Port 1	Aktywuje i dezaktywuje	Selektor może przyjmować wartości 0 (selektor w górę) i 1 (selektor w dół). 1 oznacza, że	
4	Dip switch Link Port 0	odporność	rezystor jest włączony, a 0 oznacza, że rezystor jest wyłączony	

Podłączenie portu komunikacyjnego COM:

PIN	Definicja	Funkcja	Obserwacja	
1	Brak	Brak		
2	UC-A	Sygnał różnicowy RS485 - A	Currel menitere unio felourile 405	
3	UC-B	Sygnał różnicowy RS485 -B	Sygnat monitorowania falowinka 485	
4	EN+	Sygnał różnicowy RS485 +	Sugnat falownika 195	
5	EN-	Sygnał różnicowy RS485 -	Sygnal falownika 485	
6	MET-A	Sygnał różnicowy RS485 - A	Sugnatintaligantnaga licznika 495	
7	MET-B	Sygnał różnicowy RS485 -B	Sygnal Intellgentnego licznika 485	
8	CAN-H	Dane o dużej szybkości CAN	Sygnat komunikaciji CAN falownika	
9	CAN-L	Dane o małej prędkości CAN	Sygnal Kontunikacji CAN Talownika	
10	Brak	Brak		
11	Brak	Brak		
12	GND			
13	D1/5		(DRMS) Interfeieu logiczne dla Australii poniżci	
14	D4/8	Sygnatinterfaisu logicznogo	(DRIVIS) IIIterrejsy logiczne dla Australii politzej standardu (ASA777) Europa ogólna (E0E40	
15	D2/6	Sygnal interrejsu logicznego	Niomey (410E)	
16	D0		Niellicy (4105)	
17	D3/7			
18		Dodatni zacisk wyjściowy		
	CT+	przekładnika prądowego	Sygnał komunikacji przekładnika prądowego	
19		Biegun ujemny wyjścia	(CT)	
	CT-	przekładnika prądowego		
20	Brak	Brak		

8. PODŁĄCZENIE BATERII

Złącza mocy dla maksymalnie 3 baterii (1 kanał):

1

2

3

- Podłączyć przewody <u>uziemiające</u> zgodnie z rysunkiem.
- **(BAT +, BAT -)** kanału <u>BAT 1 falownika</u> podłączonego równolegle do **(B+, B-)** modułu <u>baterii 1</u>.
- **(B+, B** -) modułu <u>baterii 1</u> podłączonego równolegle z **(B+, B-)** modułu <u>falownika 2</u>.
- (B+, B -) modułu baterii 2 podłączonego równolegle z (B+, B-) modułu falownika 3.

Złącza komunikacji dla maksymalnie 3 baterii (1 kanał):

- COM 1 <u>falownika</u> → Link Port IN modułu <u>baterii 1</u>.
- Link Port OUT modułu <u>baterii 1</u> → Link Port IN modułu <u>baterii 2.</u>
- <u>- Link Port OUT modułu baterii 2</u> → Link Port IN modułu <u>baterii 3</u>.
- Podłączyć rezystor końcowy do Link Port OUT modułu baterii 3.

Złącza mocy dla maksymalnie 4 baterii (2 kanały):

1

2

3

- Podłączyć przewody <u>uziemiające</u> zgodnie z rysunkiem.
- (BAT +, BAT -) kanału <u>BAT 1 falownika</u> podłączonego równolegle do (B+, B-) modułu <u>baterii 1</u>.
 (B+, B -) modułu <u>baterii 1</u> podłączonego równolegle z (B+, B-) modułu <u>falownika 2</u>.
- (BAT +, BAT -) kanału <u>BAT 1 falownika</u> podłączonego równolegle do (B+, B-) modułu <u>baterii 3</u>.
 (B+, B -) modułu <u>baterii</u> 3 podłączonego równolegle do (B+, B-) modułu <u>baterii 4</u>.

Złącza komunikacji dla maksymalnie 4 baterii (2 kanały):

- COM 1 <u>falownika</u> → Link Port IN modułu <u>baterii 1</u>.
- Link Port OUT modułu <u>baterii 1</u> → Link Port IN modułu <u>baterii 2</u>.
- Podłączyć rezystor końcowy do Link Port OUT modułu baterii 2.

- COM 2 <u>falownika</u> → Link Port IN modułu <u>baterii 3</u>.

- Link Port OUT modułu <u>baterii 3</u> → Link Port IN modułu <u>baterii 4</u>.
- Podłączyć rezystor końcowy do Link Port OUT modułu baterii 4.

12

<u>Uwaga:</u> Upewnić się, że przewody są dokładnie zamocowane.

Jeśli pojemność systemu jest większa niż 15 kWh, baterie są podłączane do interfejsu wejściowego baterii falownika w dwóch niezależnych grupach.

Pojemność baterii wynosi od 5 do 20 kWh (w przypadku <u>4 baterii</u> należy zakupić zestaw rozszerzający, numer części ZZT-ZBT5K-EXT-KIT). 20kWh

W przypadku wyłączenia systemu należy WYŁĄCZYĆ ZASILANIE PRĄDU PRZEMIENNEGO, poprzez otwarcie przeznaczonego do tego celu wyłącznika. NIGDY nie wyłączać baterii przed odłączeniem napięcia prądu przemiennego, a następnie przy podłączonym systemie magazynującym do sieci prądu przemiennego.

9.1 USTAWIENIE KANAŁU FOTOWOLTAICZNEGO

Aby ustawić kanały fotowoltaiki:

<u>Ustawienia podstawowe → Konfiguracja kanałów</u>

Podczas podłączania ciągów w trybie trybie niezależnym:

- Wejście kanału 3 wejście FV 1
- Wejście kanału 4 wejście FV 2

Podczas podłączania ciągów w trybie trybie trybie równoległym:

- Wejście kanału 3 wejście FV 1
- O Wejście kanału 4 wejście FV 1

9.2 USTAWIENIE KANAŁU BATERII

Abyustawić 1 kanał baterii:	Abyustawić 2 kanały baterii:
<u>Ustawienia podstawowe 🗲 Konfiguracja kanałów</u>	<u>Ustawienia podstawowe → Konfiguracja kanałów</u>
O Wejście kanału 1 - Wejście Batt 1	O Wejście kanału 1 - Wejście Batt 1
O Wejście kanału 2 - Nieużywane	O Wejście kanału 2 - Wejście Batt 2
Ustawienia zaawansowane \rightarrow 0715 \rightarrow Parametry bate	ri¥stawienia zaawansowane →0715 → Parametry baterii:
-Liczba baterii:	
Grupa 1 \rightarrow (wprowadzić liczbę zainstalowanych baterii)	-Liczba baterii:
Grupa $2 \rightarrow 0$	Grupa 1 →(wprowadzić liczbę zainstalowanych baterii)
	Grupa 2 →(wprowadzić liczbę zainstalowanych baterii)
- Bateria 1:	
Głębokość rozładowania: 80%	- Bateria 1:
-	Głębokość rozładowania: 80%
	- Bateria 2:
	Głębokość rozładowania: 80%

10.1 POMIAR WYMIANY ZA POMOCĄ CZUJNIKA CT

PIN	Definicja	
19	CT- (czarny/żółty)	
18	CT+ (czerwony)	
	-	

Stosować przy odległościach mniejszych niż 50m między falownikiem a CT

Podłączyć biegun ujemny i dodatni czujnika odpowiednio do wejścia 19 i 18 złącza COM

UMIESZCZANIE CZUJNIKA CT:

✓ Umieszczony na wyjściu z licznika wymiany (po stronie użytkownika) i musi obejmować wszystkie przewody fazowe wchodzące lub wychodzące z licznika.

✓ Kierunek CT jest niezależny od instalacji i jest rozpoznawany przez system podczas pierwszego

uruchomienia.

Użyć **JAKO PRZEWÓD PRZEDŁUŻAJĄCY** przewód 8- biegunowy **STP** kategorii 6, użyć wszystkich biegunów kolorowych

(niebiesko-pomarańczowo-zielono-brązowy), aby przedłużyć dodatni przewód CT i wszystkie białe/kolorowe bieguny

(biały/niebieski-biały/pomarańczowy/biały/zielony-brązowy), aby przedłużyć ujemny przewód CT. Ekran musi być podłączony z jednej z dwóch stron do masy.

Czujnik musi obejmować wszystkie przewody fazowe wchodzące lub wychodzące z licznika.

10.2 POMIAR WYMIANY ZA POMOCĄ MIERNIKA DDSU

PIN FALOWNIKA	PIN MIERNIKA	Uwaga
6	→ 24	Komunikasis Miomika ummianu
7 —	→ 25	Komunikacja mernika wyniany

Podłączenia miernika DDSU

1. Podłączyć miernik i falownik poprzez port szeregowy RS485. Po stronie miernika port jest identyfikowany za pomocą PIN 24 i 25.

Po stronie falownika należy użyć portu przyłączeniowego oznaczonego jako "COM" poprzez podłączenie PIN 6 i 7

2. Szczegółowe informacje na temat podłączania miernika w trybie «wprowadzania bezpośredniego»:

- ✓ Połączyć PIN 2 miernika do przewodu neutralnego (N);
- ✓ Podłączyć PIN 3 odpowiednio do fazy w kierunku licznika wymiany;
- Podłączyć PIN 1 do fazy w kierunku systemu fotowoltaicznego i obciążeń.

UWAGA: W przypadku odległości pomiędzy miernikiem a falownikiem hybrydowym przekraczającej 100 metrów, zaleca się podłączenie za pomocą daisy chain 485

dwa oporniki 120 Ohm, pierwszy przy falowniku (pomiędzy PIN 6 i 7 COM falownika), drugi bezpośrednio przy mierniku (PIN 24 i 25).

10.2.1 USTAWIENIE MIERNIKA NA WYMIANIE I FALOWNIKU

- 1. Sprawdzić, naciskając przycisk że adres miernika jest ustawiony na **001**. Oprócz powyższych informacji na wyświetlaczu pojawiają się również następujące wartości:
- ✓ Prad;
- ✓ Napięcie;
- ✓ Czynnik mocy;
- ✓ Moc.

2. Aby skonfigurować odczyt miernika na falowniku, należy wejść na wyświetlacz falownika (jak pokazano na rysunkach):

- 1. Pierwszy przycisk po lewej od falownika;
- Ustawienia zaawansowane;
- 3. Wprowadzić hasło «0715»;
- 4. Set PCC Meter;
- 5. Włącza;
- 6. Ok.

Abilita

Set PC	C Meter	

10.2.2 POMIAR PRODUKCJI ZEWNĘTRZNEJ ZA POMOCĄ MIERNIKA DDSU

Podłączenia miernika DDSU

1. Podłączyć miernik i falownik poprzez port szeregowy RS485.

Po stronie miernika drzwi te są identyfikowane **PIN 24 i 25.**

Po stronie falownika używać portu COM podłączając **PIN 6 i 7**

2. Szczegółowe informacje na temat podłączania miernika w trybie «wprowadzania bezpośredniego»:

- ✓ Połączyć PIN 2 miernika do przewodu neutralnego (N);
- ✓ Podłączyć PIN 3 odpowiednio do fazy w kierunku produkcji zewnętrznej;
- Podłączyć PIN 1 do fazy w kierunku nowego systemu fotowoltaicznego i obciążeń.

UWAGA: W przypadku odległości pomiędzy miernikiem a falownikiem hybrydowym **większej niż 100 metrów** zaleca się podłączenie dwóch oporników 485 wzdłuż łańcucha pomiarowego 485, pierwszy do falownika (pomiędzy PIN 6 i 7 COM falownika), drugi bezpośrednio do miernika (PIN 24 i 25).

17

1.1 Sprawdzić, naciskając przycisk

że adres miernika jest ustawiony na 🗔 📿

Oprócz powyższych informacji na wyświetlaczu pojawiają się również

- następujące wartości:
- ✓ Prad;
- ✓ Napięcie;
- ✓ Czynnik mocy;
- ✓ Moc.

Mod

Napiecie

1.2 Ustawienie adresu miernika produkcji:

2. Nie są wymagane konfiguracje falownika w celu ustawienie miernika na produkcję zewnętrznąnie.

10.2.4 KONFIGURACJA MIERNIKA DDSU WYMIANY I MIERNIKA DDSU PRODUKCJI

W celu sprawdzenia poprawności odczyty **miernika na wymianie,** należy upewnić się, że falownik hybrydowy oraz wszelkie inne źródła produkcji fotowoltaicznej są wyłączone.

Włączyć obciążenia większe niż 1 kW.

Ustawić się przed miernikiem i używając przycisków

" przewijać wpisy, należy sprawdzić, czy:

Moc P jest:

- •Większa niż 1 kW.
- •Zgodne z domowym zużyciem.
- •Znak przed każdą wartością ujemną (-).

W przypadku **mierników do odczytu produkcji fotowoltaicznej już obecnych**, konieczne jest powtórzenie poprzednich operacji:

- 1. Znak mocy tym razem musi być dodatni dla P.
- Włączyć falownik hybrydowy, pozostawiając przełącznik PV po stronie prądu stałego w pozycji wyłączonej, sprawdzić, czy całkowita wartość mocy zewnętrznej pt urządzenia fotowoltaicznego jest zgodna z wartością pokazywaną na wyświetlaczu falownika.

10.3 ODCZYT ZA POMOCĄ MIERNIKA DTSU

Schemat jednokreskowy falownika hybrydowego tryb odczytu miernik na wymianie

Schemat jednokreskowy falownika hybrydowego tryb odczytu miernik na wymianie i produkcja zewnętrzna

2. Podłączyć PIN 10 miernika przewodem neutralnym (N), podłączyć PIN 2, 5 i 8 odpowiednio do faz R, S i T.
Podłączenia CT, czujnik umieszczony na fazie R musi mieć podłączone zaciski z PIN 1 (przewód czerwony) i PIN 3 (przewód czarny).
Czujnik umieszczony na fazie S musi mieć podłączone zaciski z PIN 4 (przewód czerwony) i PIN 6 (przewód czarny).
Czujnik umieszczony na fazie T musi mieć podłączone zaciski z PIN 7 (przewód czerwony) i PIN 9 (przewód czarny).
Ustawić czujniki zwracając uwagę na wskazanie na samym czujniku (strzałka w kierunku sieci).
UWAGA: podłączyć CT do faz tylko po podłączeniu ich do miernika.

+CTs

+CT₁

+CT_R

UWAGA: W przypadku **odległości** pomiędzy miernikiem a falownikiem hybrydowym przekraczającej **100 metrów**, zaleca się podłączenie za pomocą daisy chain 485 dwa oporniki 120 Ohm, pierwszy przy falowniku (pomiędzy PIN 6 i 7 COM falownika), drugi bezpośrednio przy mierniku (PIN 24 i 25).

USTAWIENIE MIERNIKA NA WYMIANIE I FALOWNIKU

1. Sprawdzić, naciskając przycisk

że adres miernika jest ustawiony na **001**. Oprócz powyższych informacji na wyświetlaczu pojawiają się również następujące wartości:

- ✓ Prąd;
- ✓ Napięcie;
- ✓ Czynnik mocy;

poprzez podłączenie PIN

6 i 7

✓ Moc.

2. Aby skonfigurować odczyt miernika na falowniku, należy wejść na wyświetlacz falownika (jak pokazano na rysunkach):

- 1. Pierwszy przycisk po lewej od falownika;
- 2. Ustawienia zaawansowane;
- 3. Wprowadzić hasło «0715»;
- Set PCC Meter;
- 5. Włącza;
- 6. Ok.

20

<u>/!</u>

10.3.1 USTAWIENIE MIERNIKA DTSU

Aby skonfigurować urządzenie w trybie odczytu na wymianie, konieczne jest wejście do menu ustawień, jak pokazano poniżej: •Nacisnać SET, pojawi się napis CODE Ponownie nacisnąć SET

- •Wpisać liczba "701" :
 - 1.0d pierwszego ekranu, na którym pojawia się liczba "600", nacisnąć przycisk "→" raz, aby napisać liczbę "601".
 - 2. Nacisnąć "SET" dwa razy, aby przesunąć kursor w lewo i Zaznaczyć "601";
 - 3. Nacisnąć raz przycisk "→" plus, aż do zapisania liczby "701"

Uwaga: W przypadku błędu wcisnąć "ESC", a następnie "SET", aby zresetować wymagany kod.

•Potwierdzić naciskając SET, aż do wejścia do menu ustawień.

•Wprowadzić następujące menu i ustawić wskazane parametry:

- 1. CT:
 - Nacisnąć SET, aby wejść się do menu. a.
 - Wpisać "40". b.
 - a. Z pierwszego ekranu, na którym pojawi się liczba "1", nacisnąć przycisk "→", aż do zapisania liczby "10".
 - Nacisnąć **"SET**" jeden raz, aby przesunąć kursor w lewo i zaznaczyć "10"; Nacisnąć kilka razy przycisk "→" plus, aż do zapisania liczby "40" b.
 - c.
 - Nacisnąć "ESC", aby potwierdzić i "→", aby przejść do następnego ustawienia. d.

Uwaga: W przypadku sond CT innych niż dostarczone, zapisać prawidłowy raport transformacji.

Uwaga: W przypadku wystąpienia błędu, należy naciskać "SET" aż do momentu podświetlenia liczby tysięcy, a następnie naciskać "→", aż pojawi się tylko liczba "1"; w tym miejscu powtórzyć procedurę opisaną powyżej.

CHNT

2. ADDRESS:

Nacisnąć SET, aby wejść się do menu: a.

d. Nacisnąć "ESC", aby potwierdzić.

- Pozostawić "01" dla miernika przy wymianie b.
- Wpisać <u>"02</u>" (naciskając raz "→" z ekranu "01"). Pod adresem 02 c. falownik przydziela dane wysyłane przez miernik jako moc produkcyjną. Można ustawić maksymalnie 3 mierniki do produkcji (adresy 02 03 04)

CHNT 三相囚线电子式电解表(导# 00 ADDRESS SET ESC

三相四规电子式电能表(导轨

Miernik na wymianie

Miernik na produkcji

10.2.5 WERYFIKACJA PRAWIDŁOWEGO ODCZYTU MIERNIKA DDSU

W celu sprawdzenia poprawności odczyty miernika na wymianie, należy upewnić się, że falownik hybrydowy oraz wszelkie inne źródła produkcji fotowoltaicznej są wyłączone.

Włączyć obciążenia większe niż 1kW dla każdej z trzech faz instalacji.

Ustawić się przed miernikiem i używając przycisku "→" do przewijania elementów i przycisku "ESC" do cofania się, należy sprawdzić:

W przypadku mierników do odczytu produkcji fotowoltaicznej już obecnych, konieczne jest powtórzenie poprzednich operacji:

- 1. Kontrola współczynnika mocy, jak opisano w poprzednim przypadku
- 2. 3.

prądu przemiennego.

W celu doprowadzenia napięcia prądu stałego do falownika hybrydowego należy ustawić wyłącznik w pozycji ON

22

12. PIERWSZA KONFIGURACJA

WAŻNE: Wyposażyć się w komputer i USB w przypadku żądań aktualizacji i ustawienia kodu kraju innych niż domyślne

Parametr	Uwaga
1. Opcje językowe	Domyślnym ustawieniem jest język angielski.
*2. Ustawianie i potwierdzanie czasu systemowego	Jeśli jesteś podłączony do komputera głównego jako kolektor lub aplikacja mobilna, czas powinien zostać skalibrowany do czasu lokalnego.
**3. Ustawianie parametrów bezpieczeństwa	Należy znaleźć plik z parametrami bezpieczeństwa (nazwany po odpowiednim kraju bezpieczeństwa) na stronie internetowej, pobrać go na pamięć flash USB i zaimportować.
***4. Ustawianie parametrów baterii	W zależności od konfiguracji kanału wejściowego mogą być wyświetlane wartości domyślne.
5. Konfiguracja jest kompletna	

*2. Ustawianie i potwierdzanie czasu systemowego

Γ

**3. Ustawianie parametrów bezpieczeństwa (Kod kraju)

	1.Ustawienia podstawowe							
							3. Parametry	bez
Coo	de		Region	Code		R	egion	
	000		VDE4105		000		EN50438	
	001		BDEW	018	001	EU	EN50549	
000	0.02	G	VDE0126		002		EU-EN50549-HV	
000	002	Germany	VDE0126	019	000	IEC EN61727		
	003		VDE4105-HV	020	000	Korea	Korea	
	004		BDEW-HV	020	001	norea	Korea-DASS	
	000		CEI-021 Internal	021	000	Sweden		
	001		CEI-016 Italia		000		EU General	
001		Italia		022	001	Europe General	EU General-MV	
	002		CEI-021 External		002		EU General-HV	
	003		CEI-021 In Areti	024	000	Cyprus	Cyprus	
<u> </u>	004		CEI-021InHV		000		India	
				025	001	India	India-MV	
002	000		Australia		002		India-HV	
	008	Australia	Australia-B	026	000	Philippines	PHI	
					001		PHI-MV	
<u> </u>	009		Australia-C		000		New Zealand	
	000		ESP-KD1699	027	001	New Zealand	New Zealand-MV	
0.02	001	Service	KD1699-HV		002		New Zealand-HV	
005	002	999999	NIS UNEQUEOR	1	000		Brazil	
	003		UNE217002+RD647	0.20	001	Bunnil	Brazil-LV	
004	004	Turkers	apian Island	028	002	Drazii	Brazil-230	
004	000	Donmark	Donmark	1	003		Brazil-254 Progil 200	
003	000	FOELOWINGTER	DV TR222		004		CK VDC	
006	0001	Greece	GR-Continent	029	000	Slovakia	CK-CCE	
000	001	SUCCESSE	GR-Jaland		002	0000000	SK-75D	
	001		Netherland	020	0002		514-255	
007	001	Netherland	Netherland-MV	031-032	000			
	002		Netherland-HV	033	000	Ukraine		
	000		Belgium		000		Norway	
008	001	Belgium	Belgium-HV	034	001	Norway	Norway-LV	
	000		G99	035	000	Mexico	Mexico-LV	
009	001	UK	G98	036-037				4
	002		G99-HV	038	000	60Hz		
010	000		China-B	039	000	Ireland EN5043	8 Ireland	
	001		Taiwan	040	000	Thailand	Thai-PEA	
	002		TrinaHome	040	001	Indiano	Thai-MEA	
	003		HongKong	041				
	004	China	SKYWORTH	042	000	50Hz	LV-50Hz	
	005	China	CSISolar.	043				
	006		CHINT	044	000	South Africa	SA	
	007		China-MV	•	001	boatanninea	SA-HV	
	008		China-HV	045				
	009		China-A	046	000	Dubai	DEWG	
	000		France		001		DEWG-MV	
011	001	France	FAR Arrete23	047-106				
	002		FR VDE0126-HV	107	000	Croatia	Croatia	
<u> </u>	003		France VFR 2019	108	000	Lithuania	Lithuania	
	000		Poland	109	000			
012	001	Poland	Poland-MV	110	0.05			
	002		Poland-HV	111	000	Columbia	Columbia	
0.15	003	Auroratio	Poland-ABCD	440.465	001		Columbia-LV	
013	000	Austria	for Erzeuger	12-120	0.000	Coundi Annal-1-	IEC(211)	
014	000	Japan		121	000	Jatura Arabia	16002110	
015	001	Switzenlau		122	000	Pomonio	+	
16-17	003	0177100517997		123	000	Romania	1	
10-1/			I					

ezpieczeństwa

Aby ustawić właściwy kraj, włożyć do USB rozpakowany folder o nazwie "safety", który można pobrać ze strony https:https://www.zcsazzurro.com/it/documentazio ne/easy-power-one-all

🗸 📩 Accesso rapido		Nome	Ultima modifica	Tipo	Dimension
E Desktop	*	safety	25/02/2022 16:54	Cartella di file	
🛓 Download	*	- I			
Documenti	*				
R Immagini	*				
← → · ↑	•	Unità USB (D:) > safety			
\leftrightarrow \rightarrow \checkmark \uparrow	•	Unità USB (D:) → safety		-	
← → ~ ↑ • ★ Accesso rapido	•	Unità USB (D:) > safety	Ultima modifica	Tipo	Dimensione
← → · ↑ ✓ ★ Accesso rapido ■ Desktop	*	Unità USB (D:) > safety Nom 000-000-0507	Ultima modifica 14/01/2021 02:41	Tipo Documento di testo	Dimensione 4 KB
← → · ↑ ✓ ★ Accesso rapido ■ Desktop ↓ Download	*	Unità USB (D;) > safety Nom 000-000-0507 001-000-0507	Ultima modifica 14/01/2021 02/41 06/01/2021 13:31	Tipo Documento di testo Documento di testo	Dimensione 4 KB 4 KB
← → · ↑ ✓ ★ Accesso rapido ■ Desktop ↓ Download ■ Documenti	* * *	Unità USB (D) > safety Nom 000-000-0507 001-000-0507 001-000-0507	Ultima modifica 14/01/2021 0241 06/01/2021 13:31	Tipo Documento di testo Documento di testo	Dimensione 4 KB 4 KB
 ← → ∽ ↑ ★ Accesso rapido Desktop ↓ Download Documenti ▲ Immagini 	* * * *	Unità USB D3 > safety Nom 000-000-0507 001-000-0507	Ultima modifica 14/01/2021 02/41 06/01/2021 13/31 27/01/2021 10/27	Tipo Documento di testo Documento di testo Documento di testo	Dimensione 4 KB 4 KB 4 KB

UWAGA: Falowniki są domyślnie ustawione z kodem kraju w odniesieniu do CEI-021 w przypadku interfejsu zewnętrznego, jeżeli wymagane jest użycie innego kodu kraju, należy skontaktować się z działem serwisu

13. SPRAWDZENIE POPRAWNOŚCI DZIAŁANIA

1) Ustawić wyłącznik fotowoltaiczny w pozycji wyłączonej i odłączyć falownik od sieci

2) Przywrócić napięcie przemienne poprzez pociągnięcie specjalnego wyłącznika :

3) Sprawdzić, czy wartość mocy pobieranej z sieci na wyświetlaczu jest w przybliżeniu równa wartości poboru mocy wskazywanej przez licznik lub uzyskanej za pomocą amperomierza zaciskowego pod licznikiem wymiany.

On-Grid S PV1 : NA PV ### 0.00kW	tate ₩ ₽ /2 : NA 1.47kW {
= 0.00kW	1.47kW →-♀
2018-06-28	09 : 11 : 28

2) Włączyć baterię/ baterie, sprawdzając, czy system pracuje w trybie opisanym w części zatytułowanej
STAN DZIAŁANIA W TRYBIE AUTOMATYCZNYM:
•PV>Load →bateria w trakcie ładowania
•PV<Load →bateria w trakcie rozładowania
•PV=Load Batteri in stand-by

UWAGA: Przy pierwszym uruchomieniu baterie naładują się do 100%

Uwaga: Jeśli opisane powyżej warunki nie są spełnione, należy:
Sprawdzić, czy czujnik prądu jest prawidłowo umieszczony, a następnie przystąpić do ponownego uruchomienia systemu.

14. SPRAWDZENIE USTAWIONYCH PARAMETRÓW FALOWNIKA

Aby sprawdzić, czy ustawione parametry są prawidłowe, należy wejść do menu wyświetlacza w pozycji "Info sistema" i sprawdzić dane ze szczególnym uwzględnieniem tych, które zostały wyróżnione

Info Falownik (1) Seryjny : ZQ1025003KE233100073 Wersja sprzętowa : V001 Wersja oprogramowania : Safety firmware version: V02000	≻Numer seryjny maszyny ≻Wersja hardware ≻Wersja zainstalowanego oprogramo ≻Wersja kodu serwisowego:	Info Falownik (4) Skanowanie krzywej IV: Wyłączony Interfejs logiczny: Wyłączony	≻Informacje dotyczące trybu MPPT Scan ≻Informacje o trybie DRMs0 (włączy tylko dla Australii)
Info Falownik (2) Kraj: 001-000 Poziom mocy: 6 kW	≻Kod kraju dla obowiązującego praw ≻Maksymalna moc falownika	Info Falownik (5) Czynnik mocy: 1.00 Tryb 0 wprowadzanie: Wyłączony Odporność izolacji 7000KOhm	 Wartość współczynnika mocy Informacje na temat trybu maksymalnego zasilania ^{Siguartoso} zmierzona rezystancji izolacji
Info Falownik (3) Tryb wejścia PV: Niezależny Tryb pracy: Adres RS485: EPS : Wyłączony	 Tryb wejścia fotowoltaicznego (Niezo Informacja o trybie pracy (musi być o Adres komunikacyjny (wartość musi Informacje dotyczące trybu EPS 	ależny / Równoległy) automatyczna) być inna niż 00)	

15. TRYB ZERO WPROWADZANIA

W razie przerwy w zasilaniu sieciowym (o lub włączeniu w trybie Off Grid), jeśli funkcja EPS jest aktywna, falownik HYD3000-HYD6000-ZP1 będzie pracował w trybie EPS (zasilanie awaryjne), wykorzystując energię zmagazynowaną w baterii, aby dostarczyć energię do ładunku krytycznego przez port podłączeniowy LOAD.

17.2 TRYB EPS (OFF GRID) - PROCEDURA OKABLOWANIA I RODZAJE INSTALACJI

Zlokalizować obciążenia domowe krytyczne lub priorytetowe: wskazane jest zlokalizowanie obciążeń domowych niezbędnych w warunkach awarii prądu, takich jak oświetlenie, ewentualne lodówki lub zamrażarki, gniazda awaryjne.

• <u>Duże obciążenia</u> (takie jak piece, pralki, pompy ciepła) mogą nie być podtrzymywane przez falownik w stanie EPS, biorąc pod uwagę maksymalną moc wyjściową w takich warunkach.

• <u>Obciążenia o wysokim prądzie rozruchowym</u> (takie jak pompy, sprężarki lub ogólnie urządzenia napędzane silnikami elektrycznymi) mogą nie być podtrzymywane przez falownik w stanie EPS, ponieważ prąd rozruchowy, chociaż przez bardzo ograniczony okres czasu, jest znacznie wyższy niż ten dostarczany przez falownik.

• Obciążenia indukcyjne (takie jak płyty indukcyjne) mogą nie być podtrzymywane przez falownik EPS z powodu kształtu fali tych urządzeń.

Podłączyć przewody fazowy, neutralny i uziemienia do wyjścia LOAD znajdującego się po prawej stronie dolnej części falownika.

UWAGA: Wyjście LOAD powinno być używane tylko do podłączenia obciążenia krytycznego.

PRZEŁĄCZNIK MOCY

W przypadku konserwacji na elementach instalacji fotowoltaicznej lub w przypadku falownika, który nie może być używany, zaleca się zainstalowanie wyłącznika, tak aby obciążenia normalnie podłączone do linii obciążenia falownika mogły być zasilane bezpośrednio z sieci.

Pozycja 1→Obciążenia priorytetowe podłączone i zasilane przez linię LOAD falownika

Pozycja 0→Obciążenia priorytetowe, które nie są zasilane ani z falownika, ani z sieci energetycznej

Pozycja 2→Obciążenia priorytetowe podłączone i zasilane z sieci

STYCZNIK DWUSTYKOWY

W przypadku systemów wymuszonych możliwe jest zainstalowanie podwójnego stycznika łącznikowego, urządzenie to zapewni, że obciążenia krytyczne są normalnie dostarczane przez sieć, będą one dostarczane przez linię EPS LOAD falownika tylko w przypadku zaniku napięcia elektrycznego i dzięki przełączaniu styków stycznika.

UWAGA: W opisanych powyżej warunkach, w przypadku zaniku zasilania, część systemu zasilana przez port LOAD falownika zachowuje się jak system informatyczny.

Uwaga: Jeśli falownik powinien być zainstalowany w innych warunkach niż te pokazane na powyższych schematach, prosimy o kontakt z działem serwisu w celu sprawdzenia jego wykonalności.

17.3 TRYB EPS' (OFF GRID) - DZIAŁANIE

W przypadku występowania napięcia przemiennego zasilanego z sieci (normalny stan działania), zarówno obciążenia standardowe instalacji, jak i obciążenia priorytetowe są zasilane z sieci bez konieczności użycia stycznika dwuwymiennego. Poniższa ilustracja przedstawia ten tryb działania.

W przypadku awarii prądu, napięcie zmienne zasilane z sieci zostanie utracone; warunek ten przełącza wewnętrzne przełączniki falownika hybrydowego, który po ustawionym czasie aktywacji będzie zasilał napięcie zmienne 230V do wyjścia LOAD, zasilając wyłącznie napięcia krytyczne w zależności od dostępności baterii i systemu fotowoltaicznego.

UWAGA: Przy tej konfiguracji podczas stanu zaciemnienia system jest systemem informatycznym.

Aby włączyć tryb EPS (OFF GRID) należy: 1. Włączyć funkcję EPS z wyświetlacza 1.Ustawienia podstawowe L. 5. Wybrać tryb EPS 1.Włączyć tryb EPS 🔊 1.Tryb kontroli EPS 2.Wyłączyć tryb EPS 2. Należy ustawić następujące parametry wchodząc do menu Głębokość rozładowania 2. Ustawienia zaawansowane 4 1. Parametry baterii

3. Głębokość rozładowania

Po włączeniu falownika HYD3000-HYD6000-ZP1 w przypadku braku sieci, jest on w stanie pracować, dostarczając energię wejściową z PV i przechowywaną w falownikach we wcześniej ustalonych obciążeniach krytycznych. W tym celu należy uruchomić tryb EPS (Emergency Power Supply).

18.2 TRYB WYŁĄCZNIE OFF GRID - WŁĄCZANIE

 Sprawdzić, czy wbudowany wyłącznik prądu stałego znajduje się w pozycji off wyłącznika.

- 2) Włączyć baterie:
 - Ustawić przełącznik na ON;
 Nacisnąć przycisk.

Po naciśnięciu przycisku zaświeci się, a wewnętrzny styk zostanie zamknięty.

 Włączyć system fotowoltaiczny, przekręcając wyłącznik sekcyjny do pozycji ON

20.1 TRYB FALOWNIKA RÓWNOLEGŁEGO - KONFIGURACJA

1. Falowniki muszą być podłączone ze sobą za pomocą przewodu dostarczonego w opakowaniu, zwracając uwagę na to, aby wejścia były wypełnione w następujący sposób:

•Link port 0 falownika Master z włączonym rezystorem końcowym (przełącznik ustawiony na 1)

•Link port 1 falownika Master → Link port 0 falownika Slave 1

•Link port 1 falownika Slave 1 \rightarrow Link port 0 falownika Slave 2

•...

•Link port 1 falownika Slave n-1 → Link port 0 falownika Slave n

•Link port 1 falownika Slave z włączonym rezystorem końcowym (przełącznik ustawiony na 1)

Uwaga:

Rezystory końcowe są włączane za pomocą przełącznika Przewód równoległy między falownikami w wyposażeniu

- 2. Jeśli podłączone falowniki są tej samej wielkości, możliwe jest równoległe zasilanie wyjść LOAD w celu dostarczenia tej samej grupy obciążeń priorytetowych. W tym celu należy zastosować falowniki równoległe. Należy upewnić się, że podłączenia pomiędzy każdym falownikiem a równoległą tablicą rozdzielczą są prawidłowe:
 - Ta sama długość
 - Ten sam przekrój
- jak najmniejsza impedancja.

Zaleca się umieszczenie odpowiedniego zabezpieczenia na każdym przewodzie łączącym falownik z panelem.

- Całkowite obciążenie podłączone do wyjść LOAD musi być mniejsze niż całkowita suma mocy wyjściowych falowników w trybie EPS.
- 4. Mierniki muszą być podłączone do falownika Master (Primary)

20.2 TRYBY FALOWNIKA RÓWNOLEGŁEGO - USTAWIENIA

20. AKTUALIZACJA FIRMWARE

Wewnątrz folderu znajdą się pliki aktualizacji w formacie .bin lub .hex

← → Y ↑ → firmware	✓ ♂ Cerca in firmware		< > • ^ 1	> Unità USB (D:) > firmware				
^ Nome ^	Ultima modifica Tipo Dimensione		✓ ★ Accesso rapido	Nome	Ultima modifica	Tipo	Dimensione	
Accesso rapido	22/09/2023 16:56 Cartella di file		🔚 Desktop 🛷	ESHV_ARM.bin	21/01/2022 04:06	File BIN	405 KB	
Creative Cloud Files		_	↓ Download	ESHV_DM.bin	24/01/2022 04:07	File BIN	146 KB	
 OneDrive - Personal 			Documenti 🖈	ESHV_DS.bin	20/01/2022 02:50	File BIN	118 KB	

21. AUTOTEST

23. SZYBKIE INFORMACJE DOTYCZĄCE SYSTEMU

Naciśnięcie **U** z menu głównego daje natychmiastowy dostęp do informacji na temat baterii i sieci prądu przemiennego.

Vgri	d:
Igri	d: 7.85A
Freq	uency: 50.01Hz
Bat	Voltage:
Bat	CurCHRG: 0.00A
Bat	CurDisC:
Bat	Capacity: 52%
Bat	Cycles: 0000T
Bat	Temp:

PV1	Voltage
PV1	Current 0.00A
PV1	Power OW
PV2	Voltage 7.1V
PV2	Current 0.01A
PV2	Power OW
Inve	erter Temp

Standby

	Stand	by
<u> </u>	=	0.03kw
0.00kw		3.47kw ₽
2016-11-29		10:10:02

Falownik hybrydowy pozostanie w Standby do czasu:

 różnica pomiędzy produkcją fotowoltaiczną a zapotrzebowaniem na energię będzie mniejsza niż 100W

bateria jest w pełni naładowana, a produkcja fotowoltaiczna jest wyższa od zużycia (z tolerancją 100W)

bateria jest rozładowana i produkcja fotowoltaiczna jest niższa od zużycia (z tolerancją 100W)