

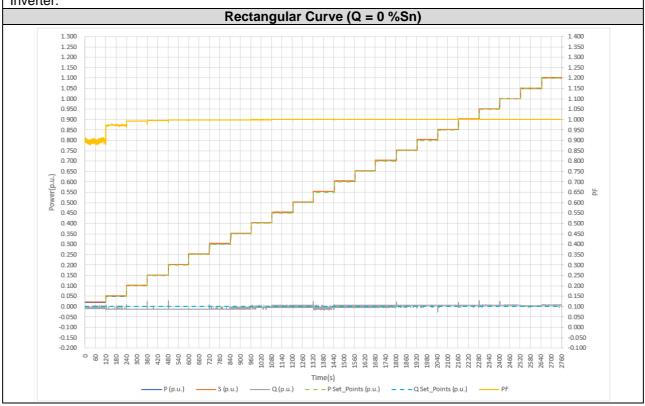
raye	39 of 108 Report no.231114030GZU-001
N.6.1 Verifica della capability di erogazione della	potenza reattiva
/reactive power production capability	
Potenza massima dell'impianto di destinazione: Maximum power of the destination plant:	 ✓ PV plant < 400 KW (see picture 1A) ✓ PV plant ≥ 400 KW (see picture 1B) ✓ Wind generator (see picture 1C)
	ΔQ ≤ ±5% for each measured points
Tollerance:	For values of P≤10%*Sn → ΔQ ≤ ±10%Sn
Sampling:	For each of the 11 levels of active power, 1 values of inductive reactive power and 1 values of capacitive reactive power must be recorded, as averaged values in 1 min, based on the measurements at the fundamental frequency in a window of 200ms,
Ambient temperature (°C):	25
Humidity (RH %)	70
Input voltage:	780V (typical value specified by the manufacturer)
statici di pote	nzionamento dei generatori enza < 400 kW nzionamento senza
statici >4	funzionamento senza oni
Q Q - Q _{cox} = -0,312 S _n + Q _{res} = +0,312 S _n	

otal Quality. Assured.

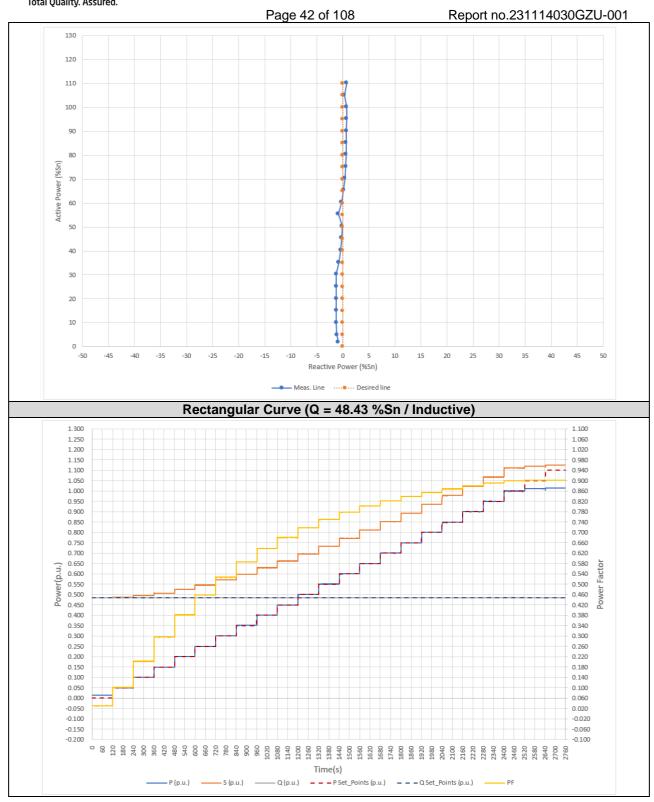
Page 40 of 108

Test model:	Test model: AZZURRO 3PH 50KTL-V3								
	Rectangular Curve (Q=0%Sn)								
P Desired	Power DC	P measured	Q measured	Q Desired	Q Deviation	Power Factor			
(%Sn)	(kW)	(%Sn)	(%Sn)	(%Sn)	(±5%Sn)	(cos φ)			
0 (1)	1.0	1.9	-0.9	0.0		0.900			
5 (1)	2.6	5.0	-1.2	0.0		0.973			
10	5.2	10.1	-1.3	0.0	-1.3	0.992			
15	7.7	15.1	-1.3	0.0	-1.3	0.996			
20	10.3	20.2	-1.3	0.0	-1.3	0.998			
25	12.8	25.3	-1.3	0.0	-1.3	0.999			
30	15.4	30.3	-1.3	0.0	-1.3	0.999			
35	18.0	35.3	-0.8	0.0	-0.8	0.999			
40	20.5	40.3	-0.4	0.0	-0.4	0.999			
45	23.1	45.4	-0.2	0.0	-0.2	1.000			
50	25.7	50.4	-0.1	0.0	-0.1	1.000			
55	28.2	55.4	-0.9	0.0	-0.9	1.000			
60	30.8	60.4	-0.2	0.0	-0.2	1.000			
65	33.3	65.4	+0.1	0.0	+0.1	1.000			
70	35.9	70.4	+0.4	0.0	+0.4	1.000			
75	38.5	75.3	+0.6	0.0	+0.6	1.000			
80	41.0	80.3	+0.6	0.0	+0.6	1.000			
85	43.6	85.3	+0.6	0.0	+0.6	1.000			
90	46.1	90.2	+0.7	0.0	+0.7	1.000			
95	48.7	95.2	+0.7	0.0	+0.7	1.000			
100	51.2	100.1	+0.7	0.0	+0.7	1.000			
105	54.0	105.0	+0.3	0.0	+0.3	1.000			
110	56.4	110.1	+0.7	0.0	+0.7	1.000			
		Rectangul	ar Curve (Q=48.	43%Sn / Indi	uctive)				

·	Rectangular Curve (Q=48.43%Sn / Inductive)								
P Desired	Power DC	P measured	Q measured	Q Deviation	Q Deviation	Power Factor			
(%Sn)	(kW)	(%Sn)	(%Sn)	(%Sn)	(±5%Sn)	(cos φ)			
0 (1)	1.043	1.5	+48.5		-	0.031			
5 (¹)	2.786	5.0	+48.5			0.102			
10	5.302	10.0	+48.5	+48.4	+0.1	0.202			
15	7.814	15.0	+48.5	+48.4	+0.1	0.296			
20	10.350	20.1	+48.5	+48.4	+0.1	0.382			
25	12.865	25.1	+48.5	+48.4	+0.1	0.459			
30	15.406	30.1	+48.5	+48.4	+0.1	0.527			
35	17.965	35.1	+48.5	+48.4	+0.1	0.587			
40	20.531	40.2	+48.5	+48.4	+0.1	0.639			
45	22.992	45.1	+48.5	+48.4	+0.1	0.681			
50	25.553	50.1	+48.4	+48.4	0.0	0.719			
55	28.113	55.1	+48.5	+48.4	+0.1	0.751			
60	30.675	60.1	+48.5	+48.4	+0.1	0.778			
65	33.183	65.0	+48.5	+48.4	+0.1	0.802			
70	35.739	70.0	+48.5	+48.4	+0.1	0.822			
75	38.324	75.1	+48.5	+48.4	+0.1	0.840			
80	40.884	80.1	+48.5	+48.4	+0.1	0.855			
85	43.440	85.0	+48.5	+48.4	+0.1	0.868			
90	46.018	90.0	+48.5	+48.4	+0.1	0.880			
95	48.617	95.1	+48.6	+48.4	+0.2	0.891			
100	51.205	100.1	+48.6	+48.4	+0.2	0.900			
105 (²)	52.012	101.1	+48.4	+48.4	0.0	0.902			
110 (²)	52.047	101.5	+48.4	+48.4	0.0	0.903			

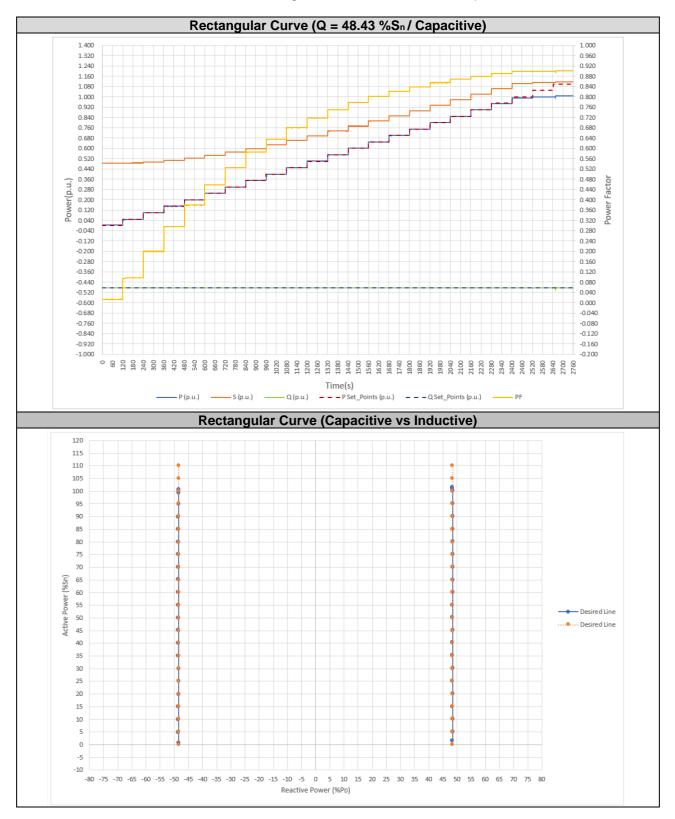


Total Quality. Assured.


Page 41 of 108

	Rectangular Curve (Q=48.43%Sn / Capacitive)								
P Desired	Power DC	P measured	Q measured	Q desired	Q Deviation	Power Factor			
(%Sn)	(kW)	(%Sn)	(%Sn)	(%Sn)	(±5%Sn)	(cos φ)			
0 (1)	1.009	0.6	-48.4	-	-	0.013			
5 (1)	3.093	4.8	-48.4	-		0.098			
10	5.659	9.9	-48.4	-48.4	-0.1	0.200			
15	8.227	15.0	-48.4	-48.4	-0.1	0.296			
20	10.684	19.9	-48.4	-48.4	-0.1	0.380			
25	13.250	25.0	-48.4	-48.4	0.0	0.458			
30	15.764	30.0	-48.4	-48.4	-0.1	0.526			
35	18.323	35.0	-48.4	-48.4	-0.1	0.586			
40	20.838	40.0	-48.4	-48.4	-0.1	0.636			
45	23.401	45.0	-48.4	-48.4	-0.1	0.680			
50	25.963	50.1	-48.4	-48.4	-0.1	0.718			
55	28.523	55.1	-48.4	-48.4	-0.1	0.751			
60	31.085	60.1	-48.4	-48.4	-0.1	0.778			
65	33.644	65.1	-48.4	-48.4	-0.1	0.802			
70	36.151	70.0	-48.4	-48.4	-0.1	0.822			
75	38.708	75.0	-48.4	-48.4	-0.1	0.840			
80	41.267	80.0	-48.4	-48.4	-0.1	0.855			
85	43.824	84.9	-48.4	-48.4	-0.1	0.868			
90	46.378	89.9	-48.4	-48.4	-0.1	0.880			
95	48.933	94.8	-48.4	-48.4	-0.1	0.891			
100	51.230	99.3	-48.4	-48.4	0.0	0.899			
105(²)	51.951	100.0	-48.4	-48.4	0.0	0.900			
110 (²)	52.033	100.7	-48.4	-48.4	0.0	0.901			

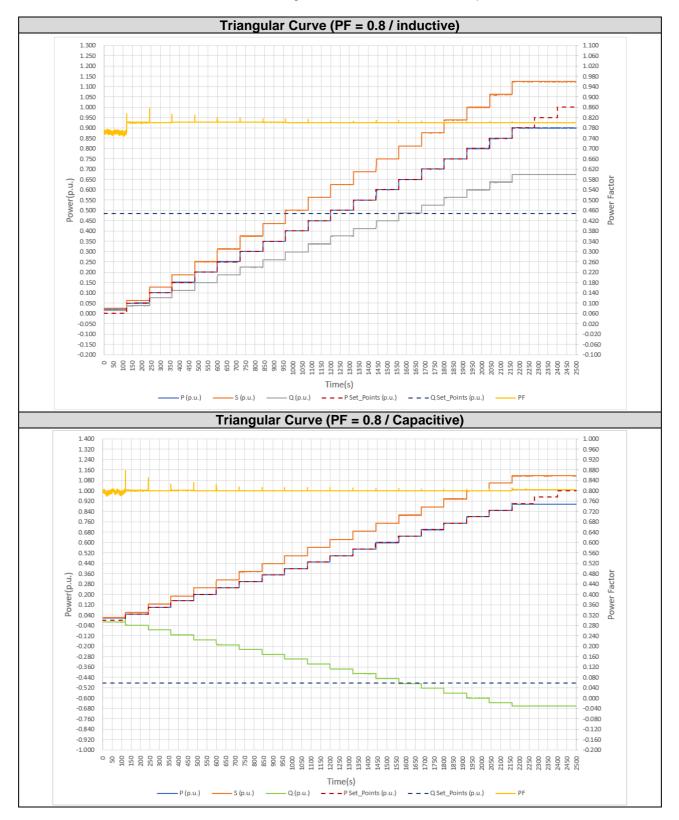
- (₁) According to point N.6.1 for lower values of generated active power (P≤10 %Sn), deviations in the reactive power are allowed up to a 10%Sn.
- (2) The desired value of active power has not been reached due to fixed reactive power is 48.4%Sn of the Inverter.



Page 43 of 108

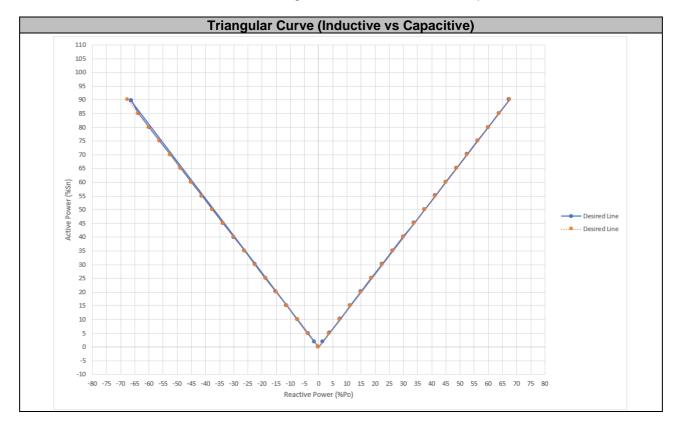
Page 44 of 108

Triangular Curve (PF = 0.8 / inductive)									
P desired (%Sn)	Power DC (kW)	P measured (%Sn)	Q measured (%Sn)	Power factor measured (cos φ)	Power factor desired (cos φ)	Power factor deviation (± 0.01cos φ)			
O (1)	1.040	1.9	1.6	0.765					
5 (1)	2.605	5.1	3.8	0.801					
10	5.172	10.2	7.6	0.800	0.800	0.000			
15	7.660	15.1	11.2	0.802	0.800	+0.002			
20	10.221	20.2	15.0	0.802	0.800	+0.002			
25	12.737	25.1	18.7	0.802	0.800	+0.002			
30	15.303	30.1	22.4	0.802	0.800	+0.002			
35	17.812	35.0	26.1	0.802	0.800	+0.002			
40	20.378	40.1	29.9	0.801	0.800	+0.001			
45	22.941	45.1	33.7	0.800	0.800	0.000			
50	25.504	50.1	37.6	0.800	0.800	0.000			
55	28.064	55.1	41.3	0.800	0.800	0.000			
60	30.623	60.1	45.0	0.800	0.800	0.000			
65	33.184	65.0	48.7	0.800	0.800	0.000			
70	35.789	70.1	52.5	0.800	0.800	0.000			
75	38.351	75.1	56.3	0.800	0.800	0.000			
80	40.907	80.0	60.0	0.800	0.800	0.000			
85	43.505	85.0	63.7	0.800	0.800	0.000			
90	46.183	90.0	67.4	0.800	0.800	0.000			
95 (2)	46.185	90.0	67.4	0.800	0.800	0.000			
100(²)	46.189	90.0	67.4	0.800	0.800	0.000			


	Triangular Curve (PF = 0.8 / Capacitive)								
P desired (%Sn)	Power DC (kW)	P measured (%Sn)	Q measured (%Sn)	Power factor measured (cos φ)	Power factor desired (cos φ)	Power factor deviation (± 0.01cos φ)			
O (1)	1.042	1.8	-1.4	0.797		(2 0.01003 φ)			
5 (1)	2.580	4.9	-3.7	0.801					
10	5.147	10.0	-7.5	0.800	0.800	0.000			
15	7.765	15.1	-11.3	0.801	0.800	+0.001			
20	10.325	20.1	-15.1	0.800	0.800	0.000			
25	12.891	25.0	-18.8	0.800	0.800	0.000			
30	15.458	30.0	-22.5	0.800	0.800	0.000			
35	18.017	35.0	-26.2	0.801	0.800	+0.001			
40	20.583	40.0	-30.0	0.800	0.800	0.000			
45	23.197	45.0	-33.8	0.800	0.800	0.000			
50	25.758	49.9	-37.4	0.800	0.800	0.000			
55	28.369	55.0	-41.2	0.800	0.800	0.000			
60	30.970	60.0	-45.0	0.800	0.800	0.000			
65	33.580	65.0	-48.7	0.800	0.800	0.000			
70	36.188	70.0	-52.4	0.800	0.800	0.000			
75	38.796	75.0	-56.1	0.800	0.800	0.000			
80	41.420	79.9	-59.9	0.800	0.800	0.000			
85	44.078	85.0	-63.6	0.801	0.800	+0.001			
90	46.598	89.7	-66.2	0.805	0.800	+0.005			
95 (²)	46.600	89.7	-66.2	0.805	0.800	+0.005			
100 (²)	46.604	89.6	-66.2	0.805	0.800	+0.005			

⁽¹⁾ No tolerance of Power Factor was defined when active power level below 10%Sn.

⁽²⁾ The desired value of active power has not been reached due to power factor is 0.8 of the Inverter.

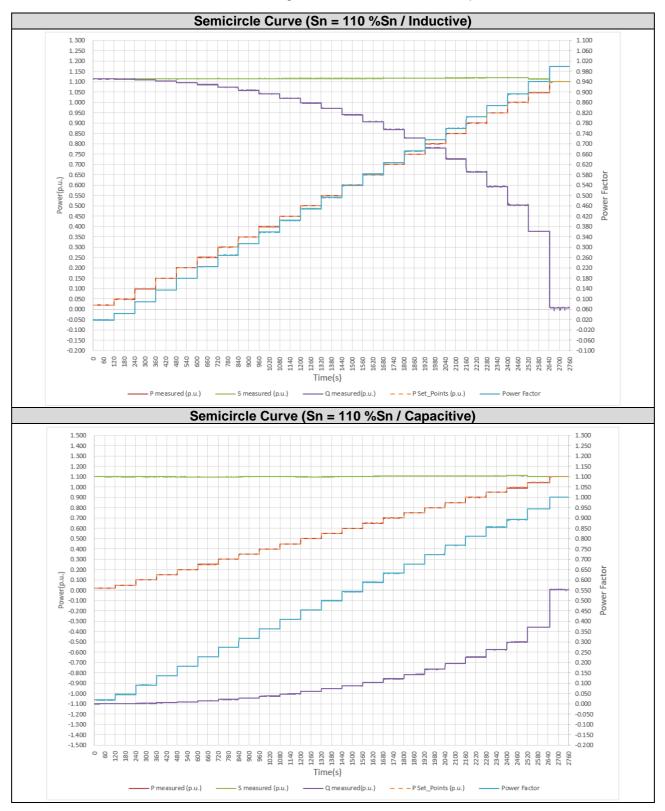


Page 45 of 108

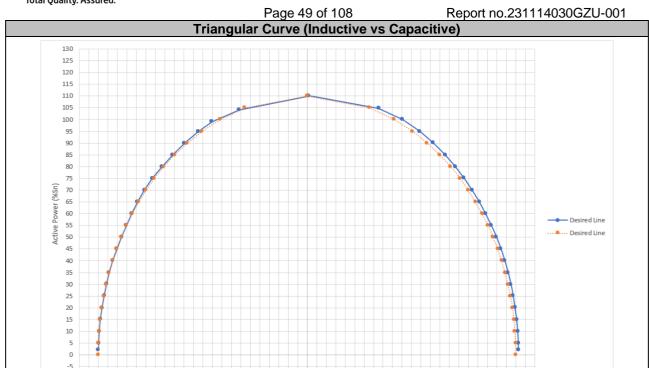
Page 46 of 108

Page 47 of 108

Test mode	Test model: AZZURRO 3PH 50KTL-V3								
		Semio	ircle Curve (S	S = 110 %S	n / Inductive	!)			
	P Desired	Р	S	Power	Q	Q	Q		
		measured	measured	Factor	measured	desired	deviation		
	(%Sn)	(%Sn)	(%Sn)	(cos φ)	(%Sn)	(%Sn) (²)	(±5%Sn)		
	O (¹)	2.1	111.4	0.018	+111.4	+110.0			
	5 (¹)	4.9	111.4	0.044	+111.3	+109.9			
	10	9.9	111.4	0.089	+111.0	+109.5	+1.5		
	15	15.0	111.4	0.135	+110.4	+109.0	+1.4		
	20	20.1	111.4	0.180	+109.6	+108.2	+1.4		
	25	25.1	111.5	0.225	+108.6	+107.1	+1.5		
	30	30.0	111.5	0.269	+107.4	+105.8	+1.6		
	35	35.0	111.5	0.314	+105.9	+104.3	+1.6		
	40	40.0	111.5	0.358	+104.1	+102.5	+1.6		
	45	45.1	111.6	0.404	+102.1	+100.4	+1.7		
	50	50.1	111.6	0.449	+99.7	+98.0	+1.7		
	55	55.0	111.6	0.493	+97.1	+95.3	+1.8		
	60	60.1	111.6	0.538	+94.0	+92.2	+1.8		
	65	65.1	111.6	0.583	+90.7	+88.7	+2.0		
	70	70.1	111.7	0.628	+86.9	+84.9	+2.0		
	75	75.1	111.7	0.672	+82.7	+80.5	+2.2		
	80	80.0	111.8	0.716	+78.0	+75.5	+2.5		
	85	85.0	111.8	0.760	+72.7	+69.8	+2.9		
	90	90.1	111.9	0.805	+66.4	+63.2	+3.2		
	95	95.0	112.0	0.848	+59.3	+55.5	+3.8		
	100	100.0	112.0	0.893	+50.3	+45.8	+4.5		
	105	104.8	111.4	0.941	+37.7	+32.8	+4.9		
	110	110.1	110.1	1.000	+0.7	+0.0	+0.7		
		110.1	110.1	1.000	10.1			1	


	Semicircle Curve (S = 110 %Sn / Capacitive)										
P Desired (%Sn)	P measured (%Sn)	S measured (%Sn)	Power Factor (cos φ)	Q measured (%Sn)	Q desired (%Sn) (2)	Q deviation (%Sn)					
0 (1)	2.1	110.0	0.019	-109.9	-110.0						
5 (1)	5.0	109.9	0.046	-109.8	-109.9						
10	10.0	110.0	0.091	-109.5	-109.5	0.0					
15	15.1	110.0	0.137	-108.9	-109.0	+0.1					
20	20.0	109.9	0.182	-108.0	-108.2	+0.2					
25	25.1	109.8	0.229	-106.9	-107.1	+0.2					
30	30.1	109.9	0.273	-105.7	-105.8	+0.1					
35	35.0	110.0	0.318	-104.3	-104.3	0.0					
40	40.1	110.0	0.364	-102.5	-102.5	0.0					
45	45.0	110.0	0.409	-100.3	-100.4	+0.1					
50	50.1	109.9	0.456	-97.8	-98.0	+0.2					
55	55.0	110.0	0.500	-95.2	-95.3	+0.1					
60	60.0	110.2	0.544	-92.5	-92.2	-0.3					
65	65.1	110.5	0.589	-89.3	-88.7	-0.6					
70	70.0	110.7	0.633	-85.7	-84.9	-0.8					
75	75.0	110.7	0.677	-81.5	-80.5	-1.0					
80	80.0	110.7	0.723	-76.4	-75.5	-0.9					
85	85.0	110.7	0.768	-70.8	-69.8	-1.0					
90	90.0	110.8	0.812	-64.6	-63.2	-1.4					
95	95.0	111.0	0.856	-57.3	-55.5	-1.8					
100	99.1	111.1	0.893	-50.1	-45.8	-4.3					
105	104.1	110.1	0.945	-35.9	-32.8	-3.1					
110	110.0	110.1	1.000	+0.7	0.0	+0.7					

⁽¹⁾ According to point N.6.1 for lower values of generated active power (P≤10 %Sn), deviations in the reactive power are allowed up to a 10 %Sn.


⁽²⁾ The desired Q is calculated from Q = $-\sqrt{(S^2 - P^2)}$.

Page 48 of 108

